ترغب بنشر مسار تعليمي؟ اضغط هنا

72 - G. Carosi 2013
We present a brief overview of the ongoing searches for the axion particle via its coupling to photons. Both the classical QCD axions and more recently proposed Axion-Like-Particles are considered. Astrophysical bounds on the axion-photon coupling co me from considerations of stellar energy loss during Helium burning, in both low- and high-mass stars. Helioscopes look for back-conversion of solar axions into x-ray photons in strong laboratory magnetic fields. Finally, haloscopes aim to detect dark matter axions in our galactic halo. Both types of searches are expecting significant advances in the future, which will enable them to probe large, well-motivated parts of the parameter space below the stellar cooling bounds.
The Axion Dark Matter eXperiment (ADMX) was designed to detect ultra-weakly interacting relic axion particles by searching for their conversion to microwave photons in a resonant cavity positioned in a strong magnetic field. Given the extremely low e xpected axion-photon conversion power we have designed, built and operated a microwave receiver based on a Superconducting QUantum Interference Device (SQUID). We describe the ADMX receiver in detail as well as the analysis of narrow band microwave signals. We demonstrate the sustained use of a SQUID amplifier operating between 812 and 860 MHz with a noise temperature of 1 K. The receiver has a noise equivalent power of 1.1x10^-24 W/sqrt(Hz) in the band of operation for an integration time of 1.8x10^3 s.
Measurement of the three dimensional trajectory and specific ionization of recoil protons using a hydrogen gas time projection chamber provides directional information about incident fast neutrons. Here we demonstrate directional fast neutron detecti on using such a device. The wide field of view and excellent gamma rejection that are obtained suggest that this device is well suited to searches for special nuclear materials, among other applications.
Axions in the micro eV mass range are a plausible cold dark matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. The first result from such an axion search using a s uperconducting first-stage amplifier (SQUID) is reported. The SQUID amplifier, replacing a conventional GaAs field-effect transistor amplifier, successfully reached axion-photon coupling sensitivity in the band set by present axion models and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا