ترغب بنشر مسار تعليمي؟ اضغط هنا

Chiral edge states are a hallmark of quantum Hall physics. In electronic systems, they appear as a macroscopic consequence of the cyclotron orbits induced by a magnetic field, which are naturally truncated at the physical boundary of the sample. Here we report on the experimental realization of chiral edge states in a ribbon geometry with an ultracold gas of neutral fermions subjected to an artificial gauge field. By imaging individual sites along a synthetic dimension, we detect the existence of the edge states, investigate the onset of chirality as a function of the bulk-edge coupling, and observe the edge-cyclotron orbits induced during a quench dynamics. The realization of fermionic chiral edge states is a fundamental achievement, which opens the door towards experiments including edge state interferometry and the study of non-Abelian anyons in atomic systems.
We present a systematic theoretical study of the five smallest oligoacenes (naphthalene, anthracene, tetracene, pentacene, and hexacene) in their anionic,neutral, cationic, and dicationic charge states. We used density functional theory (DFT) to obta in the ground-state optimised geometries, and time-dependent DFT (TD-DFT) to evaluate the electronic absorption spectra. Total-energy differences enabled us to evaluate the electron affinities and first and second ionisation energies, the quasiparticle correction to the HOMO-LUMO energy gap and an estimate of the excitonic effects in the neutral molecules. Electronic absorption spectra have been computed by combining two different implementations of TD-DFT: the frequency-space method to study general trends as a function of charge-state and molecular size for the lowest-lying in-plane long-polarised and short-polarised $pitopi^star$ electronic transitions, and the real-time propagation scheme to obtain the whole photo-absorption cross-section up to the far-UV. Doubly-ionised PAHs are found to display strong electronic transitions of $pitopi^star$ character in the near-IR, visible, and near-UV spectral ranges, like their singly-charged counterparts. While, as expected, the broad plasmon-like structure with its maximum at about 17-18 eV is relatively insensitive to the charge-state of the molecule, a systematic decrease with increasing positive charge of the absorption cross-section between about 6 and about 12 eV is observed for each member of the class.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا