ترغب بنشر مسار تعليمي؟ اضغط هنا

Accurate weak-lensing analysis requires not only accurate measurement of galaxy shapes but also precise and unbiased measurement of galaxy redshifts. The photometric redshift technique appears as the only possibility to determine the redshift of the background galaxies used in the weak-lensing analysis. Using the photometric redshift quality, simple shape measurement requirements, and a proper sky model, we explore what could be an optimal weak-lensing dark energy mission based on FoM calculation. We found that photometric redshifts reach their best accuracy for the bulk of the faint galaxy population when filters have a resolution R~3.2. We show that an optimal mission would survey the sky through 8 filters using 2 cameras (visible and near infrared). Assuming a 5-year mission duration, a mirror size of 1.5m, a 0.5deg2 FOV with a visible pixel scale of 0.15, we found that a homogeneous survey reaching IAB=25.6 (10sigma) with a sky coverage of ~11000deg2 maximizes the Weak Lensing FoM. The effective number density of galaxies then used for WL is ~45gal/arcmin2, at least a factor of two better than ground based survey. This work demonstrates that a full account of the observational strategy is required to properly optimize the instrument parameters to maximize the FoM of the future weak-lensing space dark energy mission.
Anisotropy in the point spread function (PSF) contributes a systematic error to weak lensing measurements. In this study we use a ray tracer that incorporates all the optical elements of the SNAP telescope to estimate this effect. Misalignments in th e optics generates PSF anisotropy, which we characterize by its ellipticity. The effect of three time varying effects: thermal drift, guider jitter, and structural vibration on the PSF are estimated for expected parameters of the SNAP telescope. Multiple realizations of a thousand square degree mock survey are then generated to include the systematic error pattern induced by these effects. We quantify their contribution to the power spectrum of the lensing shear. We find that the dominant effect comes from the thermal drift, which peaks at angular wavenumbers l ~ 10^3, but its amplitude is over one order of magnitude smaller than the size of the expected statistical error. While there are significant uncertainties in our modeling, our study indicates that time-varying PSFs will contribute at a smaller level than statistical errors in SNAPs weak lensing measurements.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا