ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper reports measurements of atmospheric neutrino and antineutrino interactions in the MINOS Far Detector, based on 2553 live-days (37.9 kton-years) of data. A total of 2072 candidate events are observed. These are separated into 905 contained- vertex muons and 466 neutrino-induced rock-muons, both produced by charged-current $ u_{mu}$ and $bar{ u}_{mu}$ interactions, and 701 contained-vertex showers, composed mainly of charged-current $ u_{e}$ and $bar{ u}_{e}$ interactions and neutral-current interactions. The curvature of muon tracks in the magnetic field of the MINOS Far Detector is used to select separate samples of $ u_{mu}$ and $bar{ u}_{mu}$ events. The observed ratio of $bar{ u}_{mu}$ to $ u_{mu}$ events is compared with the Monte Carlo simulation, giving a double ratio of $R^{data}_{bar{ u}/ u}/R^{MC}_{bar{ u}/ u} = 1.03 pm 0.08 (stat.) pm 0.08 (syst.)$. The $ u_{mu}$ and $bar{ u}_{mu}$ data are separated into bins of $L/E$ resolution, based on the reconstructed energy and direction of each event, and a maximum likelihood fit to the observed $L/E$ distributions is used to determine the atmospheric neutrino oscillation parameters. This fit returns 90% confidence limits of $|Delta m^{2}| = (1.9 pm 0.4) times 10^{-3} eV^{2}$ and $sin^{2} 2theta > 0.86$. The fit is extended to incorporate separate $ u_{mu}$ and $bar{ u}_{mu}$ oscillation parameters, returning 90% confidence limits of $|Delta m^{2}|-|Delta bar{m}^{2}| = 0.6^{+2.4}_{-0.8} times 10^{-3} eV^{2}$ on the difference between the squared-mass splittings for neutrinos and antineutrinos.
The production of protons, anti-protons, neutrons, deuterons and tritons in minimum bias p+C interactions is studied using a sample of 385 734 inelastic events obtained with the NA49 detector at the CERN SPS at 158 GeV/c beam momentum. The data cover a phase space area ranging from 0 to 1.9 GeV/c in transverse momentum and in Feynman x from -0.80 to 0.95 for protons, from -0.2 to 0.4 for anti-protons and from 0.2 to 0.95 for neutrons. Existing data in the far backward hemisphere are used to extend the coverage for protons and light nuclear fragments into the region of intranuclear cascading. The use of corresponding data sets obtained in hadron-proton collisions with the same detector allows for the detailed analysis and model-independent separation of the three principle components of hadronization in p+C interactions, namely projectile fragmentation, target fragmentation of participant nucleons and intranuclear cascading.
101 - S. Aoki , G. Barr , M. Batkiewicz 2012
The T2K experiment is a long baseline neutrino oscillation experiment aiming to observe the appearance of { u} e in a { u}{mu} beam. The { u}{mu} beam is produced at the Japan Proton Accelerator Research Complex (J-PARC), observed with the 295 km dis tant Super- Kamiokande Detector and monitored by a suite of near detectors at 280m from the proton target. The near detectors include a magnetized off-axis detector (ND280) which measures the un-oscillated neutrino flux and neutrino cross sections. The present paper describes the outermost component of ND280 which is a side muon range detector (SMRD) composed of scintillation counters with embedded wavelength shifting fibers and Multi-Pixel Photon Counter read-out. The components, performance and response of the SMRD are presented.
336 - P. Adamson , D. S. Ayres , G. Barr 2012
We have searched for sidereal variations in the rate of antineutrino interactions in the MINOS Near Detector. Using antineutrinos produced by the NuMI beam, we find no statistically significant sidereal modulation in the rate. When this result is pla ced in the context of the Standard Model Extension theory we are able to place upper limits on the coefficients defining the theory. These limits are used in combination with the results from an earlier analysis of MINOS neutrino data to further constrain the coefficients.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا