ترغب بنشر مسار تعليمي؟ اضغط هنا

We address the issue of minimizing the heat generated when erasing the information stored in an array of quantum dots in finite time. We identify the fundamental limitations and trade-offs involved in this process and analyze how a feedback operation can help improve it.
A nonadditive generalization of Klimontovichs S-theorem [G. B. Bagci, Int.J. Mod. Phys. B 22, 3381 (2008)] has recently been obtained by employing Tsallis entropy. This general version allows one to study physical systems whose stationary distributio ns are of the inverse power law in contrast to the original S-theorem, which only allows exponential stationary distributions. The nonadditive S-theorem has been applied to the modified Van der Pol oscillator with inverse power law stationary distribution. By using nonadditive S-theorem, it is shown that the entropy decreases as the system is driven out of equilibrium, indicating self-organization in the system. The allowed values of the nonadditivity index $q$ are found to be confined to the regime (0.5,1].
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا