ترغب بنشر مسار تعليمي؟ اضغط هنا

A new approach for solving the time-dependent two-center Dirac equation is presented. The method is based on using the finite basis set of cubic Hermite splines on a two-dimensional lattice. The Dirac equation is treated in rotating reference frame. The collision of U92+ (as a projectile) and U91+ (as a target) is considered at energy E_lab=6 MeV/u. The charge transfer probabilities are calculated for different values of the impact parameter. The obtained results are compared with the previous calculations [I. I. Tupitsyn et al., Phys. Rev. A 82, 042701 (2010)], where a method based on atomic-like Dirac-Sturm orbitals was employed. This work can provide a new tool for investigation of quantum electrodynamics effects in heavy-ion collisions near the supercritical regime.
A new method for solving the time-dependent two-center Dirac equation is developed. The approach is based on the using of the finite basis of cubic Hermite splines on a three-dimensional lattice in the coordinate space. The relativistic calculations of the excitation and charge-transfer probabilities in the U91+(1s)-U92+ collisions in two and three dimensional approaches are performed. The obtained results are compared with our previous calculations employing the Dirac-Sturm basis sets [I.I. Tupitsyn et al., Phys. Rev. A 82, 042701 (2010)]. The role of the negative-energy Dirac spectrum is investigated within the monopole approximation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا