ترغب بنشر مسار تعليمي؟ اضغط هنا

The Grism Lens-Amplified Survey from Space (GLASS) is a Hubble Space Telescope (HST) Large Program, which will obtain 140 orbits of grism spectroscopy of the core and infall regions of 10 galaxy clusters, selected to be among the very best cosmic tel escopes. Extensive HST imaging is available from many sources including the CLASH and Frontier Fields programs. We introduce the survey by analyzing spectra of faint multiply-imaged galaxies and $zgtrsim6$ galaxy candidates obtained from the first seven orbits out of fourteen targeting the core of the Frontier Fields cluster MACS0717.5+3745. Using the G102 and G141 grisms to cover the wavelength range 0.8-1.7$mu$m, we confirm 4 strongly lensed systems by detecting emission lines in each of the images. For the 9 $zgtrsim6$ galaxy candidates clear from contamination, we do not detect any emission lines down to a seven-orbit 1$sigma$ noise level of $sim$5$times$10$^{-18}$erg s$^{-1}$cm$^{-2}$. Taking lensing magnification into account, our flux sensitivity reaches $sim$0.2-5$times$10$^{-18}$erg s$^{-1}$cm$^{-2}$. These limits over an uninterrupted wavelength range rule out the possibility that the high-$z$ galaxy candidates are instead strong line emitters at lower redshift. These results show that by means of careful modeling of the background - and with the assistance of lensing magnification - interesting flux limits can be reached for large numbers of objects, avoiding pre-selection and the wavelength restrictions inherent to ground-based multi-slit spectroscopy. These observations confirm the power of slitless HST spectroscopy even in fields as crowded as a cluster core.
We select 25,000 galaxies from the NEWFIRM Medium Band Survey (NMBS) to study the rest-frame U-V color distribution of galaxies at 0 < z < 2.5. The five unique NIR filters of the NMBS enable the precise measurement of photometric redshifts and rest-f rame colors for 9,900 galaxies at 1 < z < 2.5. The rest-frame U-V color distribution at all z<~2.5 is bimodal, with a red peak, a blue peak, and a population of galaxies in between (the green valley). Model fits to the optical-NIR SEDs and the distribution of MIPS-detected galaxies indicate that the colors of galaxies in the green valley are determined largely by the amount of reddening by dust. This result does not support the simplest interpretation of green valley objects as a transition from blue star-forming to red quiescent galaxies. We show that correcting the rest-frame colors for dust reddening allows a remarkably clean separation between the red and blue sequences up to z~2.5. Our study confirms that dusty starburst galaxies can contribute a significant fraction to red sequence samples selected on the basis of a single rest-frame color (i.e. U-V), so extra care must be taken if samples of truly red and dead galaxies are desired. Interestingly, of galaxies detected at 24 microns, 14% remain on the red sequence after applying the reddening correction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا