ترغب بنشر مسار تعليمي؟ اضغط هنا

124 - M. MacCormick , G. Audi 2013
Isobaric multiplets can be used to provide reliable mass predictions through the Isobaric Multiplet Mass Equation (IMME). Isobaric analogue states (IAS) for isospin multiplets from $T=1/2$ to $T=3$ have been studied within the 2012 Atomic Mass Evalua tion (Ame2012). Each IAS established from published experimental reaction data has been expressed in the form of a primary reaction $Q$-value, and if necessary, has been recalibrated. The evaluated IAS masses are provided here along with the associated IMME coefficients. Quadratic and higher order forms of the IMME have been considered, and global trends have been extracted. Particular nuclides, requiring experimental investigation, have been identified and discussed. This dataset is the most precise and extensive set of evaluated IAS to date.
176 - S. Baruah , G. Audi , K. Blaum 2008
High-precision mass measurements on neutron-rich zinc isotopes 71m,72-81Zn have been performed with the Penning trap mass spectrometer ISOLTRAP. For the first time the mass of 81Zn has been experimentally determined. This makes 80Zn the first of the few major waiting points along the path of the astrophysical rapid neutron capture process where neutron separation energy and neutron capture Q-value are determined experimentally. As a consequence, the astrophysical conditions required for this waiting point and its associated abundance signatures to occur in r-process models can now be mapped precisely. The measurements also confirm the robustness of the N = 50 shell closure for Z = 30 farther from stability.
76 - C. Yazidjian , G. Audi , D. Beck 2007
Mass measurements on radionuclides along the potassium isotope chain have been performed with the ISOLTRAP Penning trap mass spectrometer. For 35K T1/2=178ms) to 46K (T1/2=105s) relative mass uncertainties of 2x10-8 and better have been achieved. The accurate mass determination of 35K (dm=0.54keV) has been exploited to test the Isobaric Multiplet Mass Equation (IMME) for the A=35, T=3/2 isospinquartet. The experimental results indicate a deviation from the generally adopted quadratic form.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا