ترغب بنشر مسار تعليمي؟ اضغط هنا

It is proved the existence of large algebraic structures break --including large vector subspaces or infinitely generated free algebras-- inside, among others, the family of Lebesgue measurable functions that are surjective in a strong sense, the fam ily of nonconstant differentiable real functions vanishing on dense sets, and the family of non-continuous separately continuous real functions. Lineability in special spaces of sequences is also investigated. Some of our findings complete or extend a number of results by several authors.
A number of sharp inequalities are proved for the space ${mathcal P}left(^2Dleft(frac{pi}{4}right)right)$ of 2-homogeneous polynomials on ${mathbb R}^2$ endowed with the supremum norm on the sector $Dleft(frac{pi}{4}right):=left{e^{itheta}:thetain le ft[0,frac{pi}{4}right]right}$. Among the main results we can find sharp Bernstein and Markov inequalities and the calculation of the polarization constant and the unconditional constant of the canonical basis of the space ${mathcal P}left(^2Dleft(frac{pi}{4}right)right)$.
In this note we construct a new infinite family of $(q-1)$-regular graphs of girth $8$ and order $2q(q-1)^2$ for all prime powers $qge 16$, which are the smallest known so far whenever $q-1$ is not a prime power or a prime power plus one itself.
Let $qge 2$ be a prime power. In this note we present a formulation for obtaining the known $(q+1,8)$-cages which has allowed us to construct small $(k,g)$--graphs for $k=q-1, q$ and $g=7,8$. Furthermore, we also obtain smaller $(q,8)$-graphs for even prime power $q$.
We have characterized spin-squeezed states produced at a temperature of $26^circ{mathrm C}$ on a Nuclear Magnetic Resonance (NMR) quadrupolar system. The implementation is carried out in an ensemble of $^{133}$Cs nuclei with spin $I=7/2$ of a lyotrop ic liquid crystal sample. We identify the source of spin squeezing due to the interaction between the quadrupole moment of the nuclei and the electric field gradients internally present in the molecules. We use the spin angular momentum representation to describe formally the nonlinear operators that produce the spin squeezing. The quantitative and qualitatively characterization of the spin squeezing phenomena is performed through a squeezing parameter and squeezing angle developed for the two-mode BEC system, and, as well, by the Wigner quasi-probability distribution function. The generality of the present experimental scheme indicates its potential applications on solid state physics.
The Josephson Junction model is applied to the experimental implementation of classical bifurcation in a quadrupolar Nuclear Magnetic Resonance system. There are two regimes, one linear and one nonlinear which are implemented by the radio-frequency t erm and the quadrupolar term of the Hamiltonian of a spin system respectively. Those terms provide an explanation of the symmetry breaking due to bifurcation. Bifurcation depends on the coexistence of both regimes at the same time in different proportions. The experiment is performed on a lyotropic liquid crystal sample of an ordered ensemble of $^{133}$Cs nuclei with spin $I=7/2$ at room temperature. Our experimental results confirm that bifurcation happens independently of the spin value and of the physical system. With this experimental spin scenario, we confirm that a quadrupolar nuclei system could be described analogously to a symmetric two--mode Bose--Einstein condensate.
The first known families of cages arised from the incidence graphs of generalized polygons of order $q$, $q$ a prime power. In particular, $(q+1,6)$--cages have been obtained from the projective planes of order $q$. Morever, infinite families of smal l regular graphs of girth 5 have been constructed performing algebraic operations on $mathbb{F}_q$. In this paper, we introduce some combinatorial operations to construct new infinite families of small regular graphs of girth 7 from the $(q+1,8)$--cages arising from the generalized quadrangles of order $q$, $q$ a prime power.
Let $2 le r < m$ and $g$ be positive integers. An $({r,m};g)$--graph} (or biregular graph) is a graph with degree set ${r,m}$ and girth $g$, and an $({r,m};g)$-cage (or biregular cage) is an $({r,m};g)$-graph of minimum order $n({r,m};g)$. If $m=r+1$ , an $({r,m};g)$-cage is said to be a semiregular cage. In this paper we generalize the reduction and graph amalgam operations from M. Abreu, G. Araujo-Pardo, C. Balbuena, D. Labbate (2011) on the incidence graphs of an affine and a biaffine plane obtaining two new infinite families of biregular cages and two new semiregular cages. The constructed new families are $({r,2r-3};5)$-cages for all $r=q+1$ with $q$ a prime power, and $({r,2r-5};5)$-cages for all $r=q+1$ with $q$ a prime. The new semiregular cages are constructed for r=5 and 6 with 31 and 43 vertices respectively.
Let $q$ be a prime power; $(q+1,8)$-cages have been constructed as incidence graphs of a non-degenerate quadric surface in projective 4-space $P(4, q)$. The first contribution of this paper is a construction of these graphs in an alternative way by m eans of an explicit formula using graphical terminology. Furthermore by removing some specific perfect dominating sets from a $(q+1,8)$-cage we derive $k$-regular graphs of girth 8 for $k= q-1$ and $k=q$, having the smallest number of vertices known so far.
In this paper we obtain $(q+3)$--regular graphs of girth 5 with fewer vertices than previously known ones for $q=13,17,19$ and for any prime $q ge 23$ performing operations of reductions and amalgams on the Levi graph $B_q$ of an elliptic semiplane o f type ${cal C}$. We also obtain a 13-regular graph of girth 5 on 236 vertices from $B_{11}$ using the same technique.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا