ترغب بنشر مسار تعليمي؟ اضغط هنا

83 - M. Zechmeister 2013
Optimal extraction is a key step in processing the raw images of spectra as registered by two-dimensional detector arrays to a one-dimensional format. Previously reported algorithms reconstruct models for a mean one-dimensional spatial profile to ass ist a properly weighted extraction. We outline a simple optimal extraction algorithm including error propagation, which is very suitable for stabilised, fibre-fed spectrographs and does not model the spatial profile shape. A high signal-to-noise, master-flat image serves as reference image and is directly used as an extraction profile mask. Each extracted spectral value is the scaling factor relative to the cross-section of the unnormalised master-flat which contains all information about the spatial profile as well as pixel-to-pixel variations, fringing, and blaze. The extracted spectrum is measured relative to the flat spectrum. Using echelle spectra of the HARPS spectrograph we demonstrate a competitive extraction performance in terms of signal-to-noise and show that extracted spectra can be used for high precision radial velocity measurement. Pre- or post-flat-fielding of the data is not necessary, since all spectrograph inefficiencies inherent to the extraction mask are automatically accounted for. Also the reconstruction of the mean spatial profile by models is not needed, thereby reducing the number of operations to extract spectra. Flat-relative optimal extraction is a simple, efficient, and robust method that can be applied easily to stabilised, fibre-fed spectrographs.
BD+20 1790 is a young active, metal-rich, late-type K5Ve star. We have undertaken a study of stellar activity and kinematics for this star over the past few years. Previous results show a high level of stellar activity, with the presence of prominenc e-like structures, spots on the surface and strong flare events, despite the moderate rotational velocity of the star. In addition, radial velocity variations with a semi-amplitude of up to 1 km/s were detected. We investigated the nature of these radial velocity variations, in order to determine whether they are due to stellar activity or the reflex motion of the star induced by a companion. We have analysed high-resolution echelle spectra and also two-band photometry was obtained to produce the light curve and determine the photometric period. Based upon the analysis of the bisector velocity span, as well as spectroscopic indices of chromospheric indicators and taking into account the photometric analysis, we report that the best explanation for the RV variation is the presence of a sub-stellar companion. The Keplerian fit of the RV data yields a solution for a close-in massive planet with an orbital period of 7.78 days. The presence of the close-in massive planet could also be an interpretation for the high level of stellar activity detected. Since the RV data are not part of a planet search program, we can consider our results as a serendipitous evidence of a planetary companion. To date, this is the youngest main sequence star for which a planetary candidate has been reported.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا