ترغب بنشر مسار تعليمي؟ اضغط هنا

For a sample of Swift and Fermi GRBs, we show that the minimum variability timescale and the spectral lag of the prompt emission is related to the bulk Lorentz factor in a complex manner: For small $Gamma$s, the variability timescale exhibits a shall ow (plateau) region. For large $Gamma$s, the variability timescale declines steeply as a function of $Gamma$ ($delta TproptoGamma^{-4.05pm0.64}$). Evidence is also presented for an intriguing correlation between the peak times, t$_p$, of the afterglow emission and the prompt emission variability timescale.
We use a wavelet technique to investigate the time variations in the light curves from a sample of GRBs detected by Fermi and Swift. We focus primarily on the behavior of the flaring region of Swift-XRT light curves in order to explore connections be tween variability time scales and pulse parameters (such as rise and decay times, widths, strengths, and separation distributions) and spectral lags. Tight correlations between some of these temporal features suggest a common origin for the production of X-ray flares and the prompt emission.
From a sample of GRBs detected by the $Fermi$ and $Swift$ missions, we have extracted the minimum variability time scales for temporal structures in the light curves associated with the prompt emission and X-ray flares. A comparison of this variabili ty time scale with pulse parameters such as rise times,determined via pulse-fitting procedures, and spectral lags, extracted via the cross-correlation function (CCF), indicate a tight correlation between these temporal features for both the X-ray flares and the prompt emission. These correlations suggests a common origin for the production of X-ray flares and the prompt emission in GRBs.
We present a direct link between the minimum variability time scales extracted through a wavelet decomposition and the rise times of the shortest pulses extracted via fits of 34 Fermi GBM GRB light curves comprised of 379 pulses. Pulses used in this study were fitted with log-normal functions whereas the wavelet technique used employs a multiresolution analysis that does not rely on identifying distinct pulses. By applying a corrective filter to published data fitted with pulses we demonstrate agreement between these two independent techniques and offer a method for distinguishing signal from noise.
We have investigated the time variations in the light curves from a sample of long and short Fermi/GBM Gamma ray bursts (GRBs) using an impartial wavelet analysis. The results indicate that in the source frame, the variability time scales for long bu rsts differ from that for short bursts, that variabilities on the order of a few milliseconds are not uncommon, and that an intriguing relationship exists between the minimum variability time and the burst duration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا