ترغب بنشر مسار تعليمي؟ اضغط هنا

From Swift monitoring of a sample of active galactic nuclei (AGN) we found a transient X-ray obscuration event in Seyfert-1 galaxy NGC 3227, and thus triggered our joint XMM-Newton, NuSTAR, and Hubble Space Telescope (HST) observations to study this event. Here in the first paper of our series we present the broadband continuum modelling of the spectral energy distribution (SED) for NGC 3227, extending from near infrared (NIR) to hard X-rays. We use our new spectra taken with XMM-Newton, NuSTAR, and HST/COS in 2019, together with archival unobscured XMM-Newton, NuSTAR, and HST/STIS data, in order to disentangle various spectral components of NGC 3227 and recover the underlying continuum. We find the observed NIR-optical-UV continuum is explained well by an accretion disk blackbody component (Tmax = 10 eV), which is internally reddened by E(B-V) = 0.45 with a Small Magellanic Cloud (SMC) extinction law. We derive the inner radius (12 Rg) and the accretion rate (0.1 solar mass per year) of the disk by modelling the thermal disk emission. The internal reddening in NGC 3227 is most likely associated with outflows from the dusty AGN torus. In addition, an unreddened continuum component is also evident, which likely arises from scattered radiation, associated with the extended narrow-line region (NLR) of NGC 3227. The extreme ultraviolet (EUV) continuum, and the soft X-ray excess, can be explained with a warm Comptonisation component. The hard X-rays are consistent with a power-law and a neutral reflection component. The intrinsic bolometric luminosity of the AGN in NGC 3227 is about 2.2e+43 erg/s in 2019, corresponding to 3% Eddington luminosity. Our continuum modelling of the new triggered data of NGC 3227 requires the presence of a new obscuring gas with column density NH = 5e+22 cm^-2, partially covering the X-ray source (Cf = 0.6).
In 2014 the NGC 5548 Space Telescope and Optical Reverberation Mapping campaign discovered a two-month anomaly when variations in the absorption and emission lines decorrelated from continuum variations. During this time the soft X-ray part of the in trinsic spectrum had been strongly absorbed by a line-of-sight (LOS) obscurer, which was interpreted as the upper part of a disk wind. Our first paper showed that changes in the LOS obscurer produce the decorrelation between the absorption lines and the continuum. A second study showed that the base of the wind shields the BLR, leading to the emission-line decorrelation. In that study, we proposed the wind is normally transparent with no effect on the spectrum. Changes in the wind properties alter its shielding and affect the SED striking the BLR, producing the observed decorrelations. In this work, we investigate the impact of a translucent wind on the emission lines. We simulate the obscuration using XMM-Newton, NuSTAR, and HST observations to determine the physical characteristics of the wind. We find that a translucent wind can contribute a part of the He II and Fe K? emission. It has a modest optical depth to electron scattering, which explains the fainter far-side emission in the observed velocity delay maps. The wind produces the very broad base seen in the UV emission lines and may also be present in the Fe K? line. Our results highlight the importance of accounting for the effects of such winds in the analysis of the physics of the central engine.
77 - G. A. Kriss 2019
We model the ultraviolet spectra of the Seyfert 1 galaxy NGC~5548 obtained with the Hubble Space Telescope during the 6-month reverberation-mapping campaign in 2014. Our model of the emission from NGC 5548 corrects for overlying absorption and deblen ds the individual emission lines. Using the modeled spectra, we measure the response to continuum variations for the deblended and absorption-corrected individual broad emission lines, the velocity-dependent profiles of Ly$alpha$ and C IV, and the narrow and broad intrinsic absorption features. We find that the time lags for the corrected emission lines are comparable to those for the original data. The velocity-binned lag profiles of Ly$alpha$ and C IV have a double-peaked structure indicative of a truncated Keplerian disk. The narrow absorption lines show delayed response to continuum variations corresponding to recombination in gas with a density of $sim 10^5~rm cm^{-3}$. The high-ionization narrow absorption lines decorrelate from continuum variations during the same period as the broad emission lines. Analyzing the response of these absorption lines during this period shows that the ionizing flux is diminished in strength relative to the far-ultraviolet continuum. The broad absorption lines associated with the X-ray obscurer decrease in strength during this same time interval. The appearance of X-ray obscuration in $sim,2012$ corresponds with an increase in the luminosity of NGC 5548 following an extended low state. We suggest that the obscurer is a disk wind triggered by the brightening of NGC 5548 following the decrease in size of the broad-line region during the preceding low-luminosity state.
116 - G. A. Kriss , N. Arav , D. Edmonds 2019
To elucidate the location, physical conditions, mass outflow rate, and kinetic luminosity of the outflow from the active nucleus of the Seyfert 1 galaxy Mrk 509 we used coordinated ultraviolet and X-ray spectral observations in 2012 to follow up our lengthier campaign conducted in 2009. We observed Mrk 509 with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) on 2012-09-03 and 2012-10-11 coordinated with X-ray observations using the High Energy Transmission Grating on the Chandra X-ray Observatory. Our far-ultraviolet spectra used grating G140L on COS to cover wavelengths from 920--2000 AA at a resolving power of $sim2000$, and gratings G130M and G160M to cover 1160--1750 AA at a resolving power of $sim15,000$. We detect variability in the blue-shifted UV absorption lines on timescales spanning 3--12 years. The inferred densities in the absorbing gas are greater than log $n rm~cm^{-3} sim 3$. For ionization parameters ranging over log $U = -1.5 rm~to~-0.2$, we constrain the distances of the absorbers to be closer than 220 pc to the active nucleus. The impact on the host galaxy appears to be confined to the nuclear region.
The flux variations in the emission lines in active galactic nuclei (AGNs) are driven by variations in the ionizing continuum flux --which are usually reflected in the observable UV-optical continuum. The Reverberation mapping technique measures the delay between line and continuum variations to determine the size of the line emitting region, this is the basis for measurements of the central black hole mass in AGNs. The Space Telescope and Optical Reverberation Mapping Project (AGN STORM) on NGC 5548 in 2014 is the most intensive multi-wavelength AGN monitoring campaign ever. For most of the campaign, the emission-line variations followed changes in the continuum with a time lag, as expected. However, the lines varied independently of the observed UV-optical continuum during a 60 -- 70 day holiday. To understand this remarkable phenomenon, we study the intrinsic absorption lines present in NGC 5548. We identify a novel cycle that reproduces the absorption line variability and thus identify the physics that allows the holiday to occur. In our model, variations in this obscurers line-of-sight covering factor modify the soft X-ray continuum. This leads to changes in the ionization of helium gas in the broad-line region. Ionizing radiation produced by recombining helium then affects the ionization of other species as observed during the AGN STORM holiday. It is likely that any other model which selectively changes the soft X-ray part of the continuum during the holiday can also explain the anomalous emission line behavior observed.
81 - G. A. Kriss STScI 2018
Prompted by the H I Ly$alpha$ absorption associated with the X-ray ultra-fast outflow at -17,300 $rm km~s^{-1}$ in the quasar PG~1211+143, we have searched archival UV spectra at the expected locations of H I Ly$alpha$ absorption for a large sample o f ultra-fast outflows identified in XMM-Newton and Suzaku observations. Sixteen of the X-ray outflows have predicted H I Ly$alpha$ wavelengths falling within the bandpass of spectra from either the Far Ultraviolet Spectroscopic Explorer or the Hubble Space Telescope, although none of the archival observations were simultaneous with the X-ray observations in which UFOs were detected. In our spectra broad features with full-width at half-maximum of 1000 $rm km~s^{-1}$ have 2-$sigma$ upper limits on the H I column density of generally <$2times10^{13}~rm cm^{-2}$. Using grids of photoionization models covering a broad range of spectral energy distributions, we find that producing Fe XXVI Ly$alpha$ X-ray absorption with equivalent widths $>30$ eV and associated H I Ly$alpha$ absorption with $rm N_{HI}<2times10^{13}~cm^{-2}$ requires total absorbing column densities $rm N_{H}>5times10^{22}~cm^{-2}$ and ionization parameters log $xi$ > 3.7. Nevertheless, a wide range of SEDs would predict observable H I Ly$alpha$ absorption if ionization parameters are only slightly below peak ionization fractions for Fe XXV and Fe XXVI. The lack of Ly$alpha$ features in the archival UV spectra indicates that either the UFOs have very high ionization parameters, very hard UV-ionizing spectra, or that they were not present at the time of the UV spectral observations due to variability.
We investigate the ionic column density variability of the ionized outflows associated with NGC$sim$7469, to estimate their location and power. This could allow a better understanding of galactic feedback of AGNs to their host galaxies. Analysis of s even XMM-Newton grating observations from 2015 is reported. We use an individual-ion spectral fitting approach, and compare different epochs to accurately determine variability on time-scales of years, months, and days. We find no significant column density variability in a 10 year period implying that the outflow is far from the ionizing source. The implied lower bound on the ionization equilibrium time, 10 years, constrains the lower limit on the distance to be at least 12 pc, and up to 31 pc, much less but consistent with the 1 kpc wide starburst ring. The ionization distribution of column density is reconstructed from measured column densities, nicely matching results of two 2004 observations, with one large high ionization parameter ($xi$) component at $2<log xi<3.5$, and one at $0.5<log xi<1$ in cgs units. The strong dependence of the expression for kinetic power, $propto1/xi$, hampers tight constraints on the feedback mechanism of outflows with a large range in ionization parameter, which is often observed and indicates a non-conical outflow. The kinetic power of the outflow is estimated here to be within 0.4 and 60 % of the Eddington luminosity, depending on the ion used to estimate $xi$.
(Abridged) The archetypal Seyfert 1 galaxy NGC 5548 was observed in 2013-2014 in the context of an extensive multiwavelength campaign, which revealed the source to be in an extraordinary state of persistent heavy obscuration. We re-analyzed the archi val grating spectra obtained by XMM-Newton and Chandra between 1999 and 2007 in order to characterize the classic warm absorber (WA) using consistent models and up-to-date photoionization codes and atomic physics databases and to construct a baseline model that can be used as a template for the WA in the 2013 observations. The WA in NGC 5548 is composed of 6 distinct ionization phases outflowing in 4 kinematic regimes in the form of a stratified wind with several layers intersected by our line of sight. If the changes in the WA are solely due to ionization or recombination processes in response to variations in the ionizing flux among the different observations, we are able to estimate lower limits on the density of the WA, finding that the farthest components are less dense and have a lower ionization. These limits are used to put stringent upper limits on the distance of the WA components from the central ionizing source, with the lowest ionization phases <50, <20, and <5 pc, respectively, while the intermediately ionized components lie at <3.6 and <2.2 pc from the center, respectively. The highest ionization component is located at ~0.6 pc or closer to the AGN central engine. The mass outflow rate summed over all WA components is ~0.3 Msun/yr, about six times the nominal accretion rate of the source. The total kinetic luminosity injected into the ISM is a small fraction (~0.03%) of the bolometric luminosity of the source. After adding the contribution of the UV absorbers, this value augments to ~0.2% of the bolometric luminosity, well below the minimum amount of energy required by current feedback models to regulate galaxy evolution.
An extensive multi-satellite campaign on NGC 5548 has revealed this archetypal Seyfert-1 galaxy to be in an exceptional state of persistent heavy absorption. Our observations taken in 2013-2014 with XMM-Newton, Swift, NuSTAR, INTEGRAL, Chandra, HST a nd two ground-based observatories have together enabled us to establish that this unexpected phenomenon is caused by an outflowing stream of weakly ionised gas (called the obscurer), extending from the vicinity of the accretion disk to the broad-line region. In this work we present the details of our campaign and the data obtained by all the observatories. We determine the spectral energy distribution of NGC 5548 from near-infrared to hard X-rays by establishing the contribution of various emission and absorption processes taking place along our line of sight towards the central engine. We thus uncover the intrinsic emission and produce a broadband continuum model for both obscured (average summer 2013 data) and unobscured ($<$ 2011) epochs of NGC 5548. Our results suggest that the intrinsic NIR/optical/UV continuum is a single Comptonised component with its higher energy tail creating the soft X-ray excess. This component is compatible with emission from a warm, optically-thick corona as part of the inner accretion disk. We then investigate the effects of the continuum on the ionisation balance and thermal stability of photoionised gas for unobscured and obscured epochs.
We present the results of a recent (March 2011) 160 ks Chandra-LETGS observation of the Seyfert galaxy NGC 4593, and the analysis of archival X-ray and UV spectra taken with XMM-Newton and HST/STIS in 2002. We find evidence of a multi-component warm absorber (WA) in the X-rays with four distinct ionisation degrees (log xi = 1.0, log xi = 1.7, log xi = 2.4, and log xi = 3.0) outflowing at several hundreds of km/s. In the UV we detect 15 kinematic components in the absorbers, blueshifted with respect to the systemic velocity of the source, ranging from -60 km/s to -1520 km/s. Although the predicted CIV and NV column densities from the low-ionisation X-ray outflow are in agreement with those measured for some components in the STIS spectrum, there are kinematic discrepancies that may prevent both the X-ray and UV absorbers from originating in the same intervening gas. We derive upper limits on the location of the absorbers finding that the high-ionisation gas lie within ~6 - 29 pc from the central ionising source, while the low-ionisation gas is located at several hundreds of pc. This is consistent with our line of sight passing through different parts of a stratified wind. The total kinetic energy of the outflows injected into the surroundings of the host galaxy only accounts for a tiny fraction of the bolometric luminosity of the source, and it is therefore unlikely that they may cause a significant impact in the interstellar medium of NGC 4593 in a given single episode of activity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا