ترغب بنشر مسار تعليمي؟ اضغط هنا

63 - H. Geng , G. Y. Qi , L. Sheng 2021
The three-dimensional (3D) quantum Hall effect (3DQHE) was initially proposed to be realized in systems with spontaneous charge-density-wave (CDW) or spin-density-wave (SDW), which has stimulated recent experimental progress in this direction. Here, instead of such intrinsic scenarios, we propose to realize the 3DQHE in a synthetic semiconductor superlattice. The superlattice is engineered along one direction, which is modeled by the Kronig-Penney type periodic potential. By applying a magnetic field along this direction, quantized 3D Hall conductivity can be achieved in certain parameter regimes, along with a vanishing transverse conductivity. We show that such results are robust against the disorder effect and can be hopefully realized by state-of-the-art fabrication techniques. Our work opens a new research avenue for exploring the 3DQHE in electronic superlattice structures.
410 - Ming-Xun Deng , G. Y. Qi , W. Luo 2019
We study the effect of inhomogeneous strain on transition-metal dichalcogenides with a large intrinsic gap in their spectrum. It is found that, by tuning the chemical potential, superconductivity can preserve within the strain-induced discrete pseudo Landau levels (LLs), which introduce interesting topological properties to these systems. As we show, the superconductivity for integer fillings is quantum critical, and the quantum critical coupling strength is determined by the spacing between the two LLs closest to the Fermi level. For partial fillings, the superconducting gap is scaled linearly with the coupling strength, and decreases rapidly when the chemical potential shifts away from the middle of each LL. In the presence of a Zeeman field, a pair of Majorana modes emerge simultaneously in the two valleys of strained dichalcogenides. When valley symmetry is further destroyed, a single Majorana mode can be expected to emerge at the edges of the strained monolayer dichalcogenides.
219 - Ming-Xun Deng , G. Y. Qi , R. Ma 2018
Weyl semimetals (WSMs) host charged Weyl fermions as emergent quasiparticles. We develop a unified analytical theory for the anomalous positive longitudinal magnetoconductance (LMC) in a WSM, which bridges the gap between the classical and ultra-quan tum approaches. More interestingly, the LMC is found to exhibit periodic-in-$1/B$ quantum oscillations, originating from the oscillations of the nonequilibrium chiral chemical potential. The quantum oscillations, superposed on the positive LMC, are a remarkable fingerprint of a WSM phase with chiral anomaly, whose observation is a valid criteria for identifying a WSM material. In fact, such quantum oscillations were already observed by several experiments.
41 - Z. Y. Zhou , G. Y. Qin , P. Zhang 2004
The pole structure of the low energy $pipi$ scattering amplitudes is studied using a proper chiral unitarization method combined with crossing symmetry and the low energy phase shift data. It is found that the $sigma$ pole position is at $M_sigma=470 pm 50MeV$, $Gamma_sigma=570pm 50MeV$. The existence of the virtual state pole in the IJ=20 channel is reconfirmed. Various threshold parameters are estimated and are found in general in good agreement with the results obtained from the Roy equation analyses.
A new unitarization approach incorporated with chiral symmetry is established and applied to study the $pi K$ elastic scatterings. We demonstrate that the $kappa$ resonance exists, if the scattering length parameter in the I=1/2, J=0 channel does not deviate much from its value predicted by chiral perturbation theory. The mass and width of the $kappa$ resonance is found to be $M_kappa=594pm 79MeV$, $Gamma_kappa=724pm 332MeV$, obtained by fitting the LASS data up to 1430MeV. Better determination to the pole parameters is possible if the chiral predictions on scattering lengths are taken into account.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا