ترغب بنشر مسار تعليمي؟ اضغط هنا

The bulk density of a planet, as measured by mass and radius, is a result of planet structure and composition. Relative proportions of iron core, rocky mantle, and gaseous envelopes are degenerate for a given density. This degeneracy is reduced for r ocky planets without significant gaseous envelopes when the structure is assumed to be a differentiated iron core and rocky mantle, in which the core mass fraction (CMF) is a first-order description of a planets bulk composition. A rocky planets CMF may be derived both from bulk density and by assuming the planet reflects the host stars major rock-building elemental abundances (Fe, Mg, and Si). Contrasting CMF measures, therefore, shed light on the outcome diversity of planet formation from processes including mantle stripping, out-gassing, and/or late-stage volatile delivery. We present a statistically rigorous analysis of the consistency of these two CMF measures accounting for observational uncertainties of planet mass and radius and host-star chemical abundances. We find that these two measures are unlikely to be resolvable as statistically different unless the bulk density CMF is at least 40% greater than or 50% less than the CMF as inferred from the host star. Applied to 11 probable rocky exoplanets, Kepler-107c has a CMF as inferred from bulk density that is significantly greater than the inferred CMF from its host star (2$sigma$) and is therefore likely an iron-enriched super-Mercury. K2-229b, previously described as a super-Mercury, however, does not meet the threshold for a super-Mercury at a 1- or 2- $sigma$ level.
We study heating and heat dissipation of a single c60 molecule in the junction of a scanning tunneling microscope (STM) by measuring the electron current required to thermally decompose the fullerene cage. The power for decomposition varies with elec tron energy and reflects the molecular resonance structure. When the STM tip contacts the fullerene the molecule can sustain much larger currents. Transport simulations explain these effects by molecular heating due to resonant electron-phonon coupling and molecular cooling by vibrational decay into the tip upon contact formation.
By using the method of center projection the center vortex part of the gauge field is isolated and its propagator is evaluated in the center Landau gauge, which minimizes the open 3-dimensional Dirac volumes of non-trivial center links bounded by the closed 2-dimensional center vortex surfaces. The center field propagator is found to dominate the gluon propagator (in Landau gauge) in the low momentum regime and to give rise to an OPE correction to the latter of ${sqrt{sigma}}/{p^3}$.The screening mass of the center vortex field vanishes above the critical temperature of the deconfinement phase transition, which naturally explains the second order nature of this transition consistent with the vortex picture. Finally, the ghost propagator of maximal center gauge is found to be infrared finite and thus shows that the coset fields play no role for confinement.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا