ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate mesoscopic Josephson junction arrays created by patterning superconducting disks on monolayer graphene, concentrating on the high-$T/T_c$ regime of these devices and the phenomena which contribute to the superconducting glass state in diffusive arrays. We observe features in the magnetoconductance at rational fractions of flux quanta per array unit cell, which we attribute to the formation of flux-quantized vortices. The applied fields at which the features occur are well described by Ginzburg-Landau simulations that take into account the number of unit cells in the array. We find that the mean conductance and universal conductance fluctuations are both enhanced below the critical temperature and field of the superconductor, with greater enhancement away from the graphene Dirac point.
The critical current of a thin superconducting strip of width $W$ much larger than the Ginzburg-Landau coherence length $xi$ but much smaller than the Pearl length $Lambda = 2 lambda^2/d$ is maximized when the strip is straight with defect-free edges . When a perpendicular magnetic field is applied to a long straight strip, the critical current initially decreases linearly with $H$ but then decreases more slowly with $H$ when vortices or antivortices are forced into the strip. However, in a superconducting strip containing sharp 90-degree or 180-degree turns, the zero-field critical current at H=0 is reduced because vortices or antivortices are preferentially nucleated at the inner corners of the turns, where current crowding occurs. Using both analytic London-model calculations and time-dependent Ginzburg-Landau simulations, we predict that in such asymmetric strips the resulting critical current can be {it increased} by applying a perpendicular magnetic field that induces a current-density contribution opposing the applied current density at the inner corners. This effect should apply to all turns that bend in the same direction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا