ترغب بنشر مسار تعليمي؟ اضغط هنا

122 - S. Aoki , Y. Aoki , G. Cossu 2020
We investigate the axial U(1) anomaly of two-flavor QCD at temperatures 190--330 MeV. In order to preserve precise chiral symmetry on the lattice, we employ the Mobius domain-wall fermion action as well as overlap fermion action implemented with a st ochastic reweighting technique. Compared to our previous studies, we reduce the lattice spacing to 0.07 fm, simulate larger multiple volumes to estimate finite size effect, and take more than four quark mass points, including one below physical point to investigate the chiral limit. We measure the topological susceptibility, axial U(1) susceptibility, and examine the degeneracy of U(1) partners in meson and baryon correlators. All the data above the critical temperature indicate that the axial U(1) violation is consistent with zero within statistical errors. The quark mass dependence suggests disappearance of the U(1) anomaly at a rate comparable to that of the SU(2)_L x SU(2)_R symmetry breaking.
79 - C. Rohrhofer , Y. Aoki , G. Cossu 2019
Properties of QCD matter change significantly around the chiral crossover temperature, and the effects on $U(1)_A$ and topological susceptibilities, as well as the meson spectrum have been studied with much care. Baryons and the effect of parity doub ling in this temperature range have been analyzed previously by various other groups employing different setups. Here we construct suitable operators to investigate chiral and axial $U(1)_A$ symmetries in the baryon spectrum. Measurements for different volumes and quark-masses are done with two flavors of chirally symmetric domain-wall fermions at temperatures above the critical one. The possibility of emergent $SU(4)$ and $SU(2)_{CS}$ symmetries is discussed.
119 - C. Rohrhofer , Y. Aoki , G. Cossu 2019
Based on a complete set of $J = 0$ and $J=1$ spatial isovector correlation functions calculated with $N_F = 2$ domain wall fermions we identify an intermediate temperature regime of $T sim 220 - 500$ MeV ($1.2T_c$--$2.8T_c$), where chiral symmetry is restored but the correlators are not yet compatible with a simple free quark behavior. More specifically, in the temperature range $T sim 220 - 500$ MeV we identify a multiplet structure of spatial correlators that suggests emergent $SU(2)_{CS}$ and $SU(4)$ symmetries, which are not symmetries of the free Dirac action. The symmetry breaking effects in this temperature range are less than 5%. Our results indicate that at these temperatures the chromo-magnetic interaction is suppressed and the elementary degrees of freedom are chirally symmetric quarks bound into color-singlet objects by the chromo-electric component of the gluon field. At temperatures between 500 and 660 MeV the emergent $SU(2)_{CS}$ and $SU(4)$ symmetries disappear and one observes a smooth transition to the regime above $T sim 1$ GeV where only chiral symmetries survive, which are finally compatible with quasi-free quarks.
85 - C. Rohrhofer , Y. Aoki , G. Cossu 2018
We report on the progress of understanding spatial correlation functions in high temperature QCD. We study isovector meson operators in $N_f=2$ QCD using domain-wall fermions on lattices of $N_s=32$ and different quark masses. It has previously been found that at $sim 2T_c$ these observables are not only chirally symmetric but in addition approximately $SU(2)_{CS}$ and $SU(4)$ symmetric. In this study we increase the temperature up to $5T_c$ and can identify convergence towards an asymptotically free scenario at very high temperatures.
65 - C. Rohrhofer , Y. Aoki , G. Cossu 2017
We study spatial isovector meson correlators in $N_f=2$ QCD with dynamical domain-wall fermions on $32^3times 8$ lattices at temperatures $T=220-380$ MeV. We measure the correlators of spin-one ($J=1$) operators including vector, axial-vector, tensor and axial-tensor. Restoration of chiral $U(1)_A$ and $SU(2)_L times SU(2)_R$ symmetries of QCD implies degeneracies in vector--axial-vector ($SU(2)_L times SU(2)_R$) and tensor--axial-tensor ($U(1)_A$) pairs, which are indeed observed at temperatures above $T_c$. Moreover, we observe an approximate degeneracy of all $J=1$ correlators with increasing temperature. This approximate degeneracy suggests emergent $SU(2)_{CS}$ and $SU(4)$ symmeries at high temperatures, that mix left- and right-handed quarks.
76 - S. Aoki , G. Cossu , H. Fukaya 2017
We compute the topological susceptibility $chi_t$ of lattice QCD with $2+1$ dynamical quark flavors described by the Mobius domain wall fermion. Violation of chiral symmetry as measured by the residual mass is kept at $sim$1 MeV or smaller. We measur e the fluctuation of the topological charge density in a `slab sub-volume of the simulated lattice using the method proposed by Bietenholz {it et al.} The quark mass dependence of $chi_t$ is consistent with the prediction of chiral perturbation theory, from which the chiral condensate is extracted as $Sigma^{overline{rm MS}} (mbox{2GeV}) = [274(13)(29)mbox{MeV}]^3$, where the first error is statistical and the second one is systematic. Combining the results for the pion mass $M_pi$ and decay constant $F_pi$, we obtain $chi_t = 0.229(03)(13)M_pi^2F_pi^2$ at the physical point.
We calculate the form factors of the $K to pi l u$ semileptonic decays in three-flavor lattice QCD, and study their chiral behavior as a function of the momentum transfer and the Nambu-Goldstone boson masses. Chiral symmetry is exactly preserved by using the overlap quark action, which enables us to directly compare the lattice data with chiral perturbation theory (ChPT). We generate gauge ensembles at a lattice spacing of 0.11fm with four pion masses covering 290-540 MeV and a strange quark mass m_s close to its physical value. By using the all-to-all quark propagator, we calculate the vector and scalar form factors with high precision. Their dependence on m_s and the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields. We compare the results for the semileptonic form factors with ChPT at next-to-next-to leading order in detail. While many low-energy constants appear at this order, we make use of our data of the light meson electromagnetic form factors in order to control the chiral extrapolation. We determine the normalization of the form factors as f_+(0) = 0.9636(36)(+57/-35), and observe reasonable agreement of their shape with experiment.
We present a study of chiral behavior of light meson form factors in QCD with three flavors of overlap quarks. Gauge ensembles are generated at single lattice spacing 0.12 fm with pion masses down to 300 MeV. The pion and kaon electromagnetic form fa ctors and the kaon semileptonic form factors are precisely calculated using the all-to-all quark propagator. We discuss their chiral behavior using the next-to-next-to-leading order chiral perturbation theory.
We calculate the spectral function of the QCD Dirac operator using the four-dimensional effective operator constructed from the Mobius domain-wall implementation. We utilize the eigenvalue filtering technique combined with the stochastic estimate of the mode number. The spectrum in the entire eigenvalue range is obtained with a single set of measurements. Results on 2+1-flavor ensembles with Mobius domain-wall sea quarks at lattice spacing ~ 0.08 fm are shown.
We investigate the phase structure of the SU(3) gauge theory with $N_f=8$ by numerical simulations employing the massless Domain-Wall fermions.Our aim is to study directly the massless quark region, since it is the most important region to clarify th e properties of conformal theories. When the number of flavor is within the conformal window, it is claimed recently with Wilson quarks that there is the conformal region at the small quark mass region in the parameter space in addition to the confining phase and the deconfining phase. We study the properties of the conformal region investing the spatial Polyakov loops and the temporal meson propagators. Our data imply that there is the conformal region, and a phase transition between the confining phase and the conformal region takes place. These results are consistent with the claim that the conformal window is between $7$ and $16$. Progress reports on other related studies are also presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا