ترغب بنشر مسار تعليمي؟ اضغط هنا

Inverse problems are ubiquitous because they formalize the integration of data with mathematical models. In many scientific applications the forward model is expensive to evaluate, and adjoint computations are difficult to employ; in this setting der ivative-free methods which involve a small number of forward model evaluations are an attractive proposition. Ensemble Kalman based interacting particle systems (and variants such as consensus based and unscented Kalman approaches) have proven empirically successful in this context, but suffer from the fact that they cannot be systematically refined to return the true solution, except in the setting of linear forward models. In this paper, we propose a new derivative-free approach to Bayesian inversion, which may be employed for posterior sampling or for maximum a posteriori estimation, and may be systematically refined. The method relies on a fast/slow system of stochastic differential equations for the local approximation of the gradient of the log-likelihood appearing in a Langevin diffusion. Furthermore the method may be preconditioned by use of information from ensemble Kalman based methods (and variants), providing a methodology which leverages the documented advantages of those methods, whilst also being provably refineable. We define the methodology, highlighting its flexibility and many variants, provide a theoretical analysis of the proposed approach, and demonstrate its efficacy by means of numerical experiments.
We study the response to perturbations in the thermodynamic limit of a network of coupled identical agents undergoing a stochastic evolution which, in general, describes non-equilibrium conditions. All systems are nudged towards the common centre of mass. We derive Kramers-Kronig relations and sum rules for the linear susceptibilities obtained through mean field Fokker-Planck equations and then propose corrections relevant for the macroscopic case, which incorporates in a self-consistent way the effect of the mutual interaction between the systems. Such an interaction creates a memory effect. We are able to derive conditions determining the occurrence of phase transitions specifically due to system-to-system interactions. Such phase transitions exist in the thermodynamic limit and are associated with the divergence of the linear response but are not accompanied by the divergence in the integrated autocorrelation time for a suitably defined observable. We clarify that such endogenous phase transitions are fundamentally different from other pathologies in the linear response that can be framed in the context of critical transitions. Finally, we show how our results can elucidate the properties of the Desai-Zwanzig model and of the Bonilla-Casado-Morillo model, which feature paradigmatic equilibrium and non-equilibrium phase transitions, respectively.
In this paper, we study the diffusive limit of solutions to the generalized Langevin equation (GLE) in a periodic potential. Under the assumption of quasi-Markovianity, we obtain sharp longtime equilibration estimates for the GLE using techniques fro m the theory of hypocoercivity. We then prove asymptotic results for the effective diffusion coefficient in three limiting regimes: the short memory, the overdamped and the underdamped limits. Finally, we employ a recently developed spectral numerical method in order to calculate the effective diffusion coefficient for a wide range of (effective) friction coefficients, confirming our asymptotic results.
In this work we give a proof of the mean-field limit for $lambda$-convex potentials using a purely variational viewpoint. Our approach is based on the observation that all evolution equations that we study can be written as gradient flows of function als at different levels: in the set of probability measures, in the set of symmetric probability measures on $N$ variables, and in the set of probability measures on probability measures. This basic fact allows us to rely on $Gamma$-convergence tools for gradient flows to complete the proof by identifying the limits of the different terms in the Evolutionary Variational Inequalities (EVIs) associated to each gradient flow. The $lambda$-convexity of the confining and interaction potentials is crucial for the unique identification of the limits and for deriving the EVIs at each description level of the interacting particle system.
In this paper we consider systems of weakly interacting particles driven by colored noise in a bistable potential, and we study the effect of the correlation time of the noise on the bifurcation diagram for the equilibrium states. We accomplish this by solving the corresponding McKean-Vlasov equation using a Hermite spectral method, and we verify our findings using Monte Carlo simulations of the particle system. We consider both Gaussian and non-Gaussian noise processes, and for each model of the noise we also study the behavior of the system in the small correlation time regime using perturbation theory. The spectral method that we develop in this paper can be used for solving linear and nonlinear, local and nonlocal (mean-field) Fokker-Planck equations, without requiring that they have a gradient structure.
In this paper we develop a general framework for constructing and analysing coupled Markov chain Monte Carlo samplers, allowing for both (possibly degenerate) diffusion and piecewise deterministic Markov processes. For many performance criteria of in terest, including the asymptotic variance, the task of finding efficient couplings can be phrased in terms of problems related to optimal transport theory. We investigate general structural properties, proving a singularity theorem that has both geometric and probabilistic interpretations. Moreover, we show that those problems can often be solved approximately and support our findings with numerical experiments. For the particular objective of estimating the variance of a Bayesian posterior, our analysis suggests using novel techniques in the spirit of antithetic variates. Addressing the convergence to equilibrium of coupled processes we furthermore derive a modified Poincare inequality.
We study the McKean-Vlasov equation [ partial_t varrho= beta^{-1} Delta varrho + kappa abla cdot (varrho abla (W star varrho)) , , ] with periodic boundary conditions on the torus. We first study the global asymptotic stability of the homogeneous s teady state. We then focus our attention on the stationary system, and prove the existence of nontrivial solutions branching from the homogeneous steady state, through possibly infinitely many bifurcations, under appropriate assumptions on the interaction potential. We also provide sufficient conditions for the existence of continuous and discontinuous phase transitions. Finally, we showcase these results by applying them to several examples of interaction potentials such as the noisy Kuramoto model for synchronisation, the Keller--Segel model for bacterial chemotaxis, and the noisy Hegselmann--Krausse model for opinion dynamics.
In this paper, we study the mean field limit of interacting particles with memory that are governed by a system of interacting non-Markovian Langevin equations. Under the assumption of quasi-Markovianity (i.e. that the memory in the system can be des cribed using a finite number of auxiliary processes), we pass to the mean field limit to obtain the corresponding McKean-Vlasov equation in an extended phase space. We obtain the fundamental solution (Greens function) for this equation, for the case of a quadratic confining potential and a quadratic (Curie-Weiss) interaction. Furthermore, for nonconvex confining potentials we characterize the stationary state(s) of the McKean-Vlasov equation, and we show that the bifurcation diagram of the stationary problem is independent of the memory in the system. In addition, we show that the McKean-Vlasov equation for the non-Markovian dynamics can be written in the GENERIC formalism and we study convergence to equilibrium and the Markovian asymptotic limit.
The building of mathematical and computer models of cities has a long history. The core elements are models of flows (spatial interaction) and the dynamics of structural evolution. In this article, we develop a stochastic model of urban structure to formally account for uncertainty arising from less predictable events. Standard practice has been to calibrate the spatial interaction models independently and to explore the dynamics through simulation. We present two significant results that will be transformative for both elements. First, we represent the structural variables through a single potential function and develop stochastic differential equations (SDEs) to model the evolution. Secondly, we show that the parameters of the spatial interaction model can be estimated from the structure alone, independently of flow data, using the Bayesian inferential framework. The posterior distribution is doubly intractable and poses significant computational challenges that we overcome using Markov chain Monte Carlo (MCMC) methods. We demonstrate our methodology with a case study on the London retail system.
In this paper we study the combined mean field and homogenization limits for a system of weakly interacting diffusions moving in a two-scale, locally periodic confining potential, of the form considered in~cite{DuncanPavliotis2016}. We show that, alt hough the mean field and homogenization limits commute for finite times, they do not, in general, commute in the long time limit. In particular, the bifurcation diagrams for the stationary states can be different depending on the order with which we take the two limits. Furthermore, we construct the bifurcation diagram for the stationary McKean-Vlasov equation in a two-scale potential, before passing to the homogenization limit, and we analyze the effect of the multiple local minima in the confining potential on the number and the stability of stationary solutions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا