ترغب بنشر مسار تعليمي؟ اضغط هنا

130 - T. K. Nath 2008
Magneto optic measurements are a very powerful tool for investigating the polarization of a conduction band as a function of temperature and are used here to study the polarization of the mobile electrons in 50nm LSMO (x=0.3) strained thin films grow n epitaxially on single crystalline (001) LaAlO3 (LAO) and (001) lattice matched substrate (LSAT). The magnetic circular dichroism (MCD) has been investigated in magnetic fields up to 0.5 T and over a temperature range (10 to 450 K). The MCD spectra of both the films show a peak at the band gap at around 3 eV and the peak is found to be shifted towards lower energy side with the increase of temperature. A separate polaron peak (well known in insulating samples) appears at lower energy (about 1.8 eV) with the increase of temperature in all these metallic films. The rapid decrease in conduction band polarization in the film on LAO has strong implications for the use of these manganites in room temperature spintronics.
127 - G. A. Gehring 2008
A quantum critical point is approached by applying pressure in a number of magnetic metals. The observed dependence of Tc on pressure necessarily means that the magnetic energy is coupled to the lattice. A first order phase transition occurs if this coupling exceeds a critical value: this is inevitable if diverges as Tc approaches zero. It is argued that this is the cause of the first order transition that is observed in many systems. Using Landau theory we obtain expressions for the boundaries of the region where phase separation occurs that agree well with experiments done on MnSi and other materials. The theory can be used to obtain very approximate values for the temperature and pressure at the tricritical point in terms of quantities measured at ambient pressure and the measured values of along the second order line. The values of the tricritical temperature for various materials obtained from Landau theory are too low but it is shown that the predicted values will rise if the effects of fluctuations are included.
The optical properties of a small magnetic cluster are studied in a magnetic version of Frank-Condon principle. This simple model is considered to show new basic physics and could be adopted to treat real problems. The energies and wavefunctions of t he cluster are calculated for different spin configurations to evaluate the energies and the strengths of the allowed transitions from the relaxed excited states. The optical de-excitation energies for the likely scenarios are obtained in terms of the exchange parameters of the model.
The Jahn-Teller distortive transition of lmo is described by a modified 3-state Potts model. The interactions between the three possible orbits depends both on the orbits and their relative orientation on the lattice. Values of the two exchange param eters which are chosen to give the correct low temperature phase and the correct value for the transition temperature are shown to be consistent with microscopy theory. The model predicts a first order transitions and also a value for the entropy above the transition in good agreement with experiment. The theory with the same parameters also predicts the temperature dependence of the order parameter of orbital ordering agreeing well with published experimental results. Finally, the type of the transition is shown to be close to one of the most disordered phases of the generalised Potts model. The short range order found experimentally above the transition is investigated by this model.
We report on first principles calculations of the electronic structure of La$_{0.7}$Sr$_{0.3}$MnO$_{3}$/SrTiO$_{3}$ junction with two possible types of interface terminations. We find that the La$_{0.7}$Sr$_{0.3}$O/TiO$_{2}$ interface preserves the i nterlayer ferromagnetic coupling between the interface MnO$_{2}$ layer and the bulk. The other interface, MnO$_{2}$/SrO, favours antiferromagnetic coupling with the bulk. By inserting two unit cells of undoped LaMnO$_{3}$ at the interface the ferromagnetism is recovered. This is understood in terms of the doping level and the mobility of carriers near the interface.
We report on first principles Self-Interaction Corrected LSD (SIC-LSD) calculations of electronic structure of LaMnO$_{3}$ in the cubic phase. We found a strong tendency to localisation of the Mn $e_{g}$ electron and to orbital ordering. We found the ground state to be orbitally ordered with a staggered order of $x^{2}-z^{2}$ and $y^{2}-z^{2}$ orbits in one plane and this order is repeated along the third direction. The difference in energy with a solution consisting of the ordering of $3x^{2}-r^{2}$ and $3y^{2}-r^{2}$ is, however, very small. The latter ordering is similar to the one observed both experimentally and theoretically in the real distorted system. The system is in the insulating A-type antiferromagnetic ordered state in both cases. The presence of orbital ordering means breaking of the cubic symmetry and without recourse to distortion. The latter may rather be the result of the orbital ordering but the symmetry of this ordering is determined by coupling to the lattice. The strong tendency to localisation of the $e_{g}$ electron in LaMnO$_{3}$ accounts for the survival of local distortions above the structural phase transition temperature.
252 - M. R. Ahmed , G. A. Gehring 2005
A study is made of an anisotropic Potts model in three dimensions where the coupling depends on both the Potts state on each site but also the direction of the bond between them using both analytical and numerical methods. The phase diagram is mapped out for all values of the exchange interactions. Six distinct phases are identified. Monte Carlo simulations have been used to obtain the order parameter and the values for the energy and entropy in the ground state and also the transition temperatures. Excellent agreement is found between the simulated and analytic results. We find one region where there are two phase transitions with the lines meeting in a triple point. The orbital ordering that occurs in $LaMnO_3$ occurs as one of the ordered phases.
We review Whites density matrix renormalisation group method, an increasingly popular method for the solution of low dimensional quantum Hamiltonians. We describe some applications to frustrated spin systems, quantum critical phenomena, two dimension al classical and one dimensional quantum systems at non-zero temperature, and low energy properties of two dimensional quantum models such as the Hubbard and Heisenberg Hamiltonians.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا