ترغب بنشر مسار تعليمي؟ اضغط هنا

The realization of magnetic frustration in a metallic van der Waals (vdW) coupled material has been sought as a promising platform to explore novel phenomena both in bulk matter and in exfoliated devices. However, a suitable material platform has bee n lacking so far. Here, we demonstrate that CeSiI hosts itinerant electrons coexisting with exotic magnetism. In CeSiI, the magnetic cerium atoms form a triangular bilayer structure sandwiched by van der Waals stacked iodine layers. From resistivity and magnetometry measurements, we confirm the coexistence of itinerant electrons with magnetism with dominant antiferromagnetic exchange between the strongly Ising-like Ce moments below 7 K. Neutron diffraction directly confirms magnetic order with an incommensurate propagation vector k ~ (0.28, 0, 0.19) at 1.6 K, which points to the importance of further neighbor magnetic interactions in this system. The presence of a two-step magnetic-field-induced phase transition along c axis further suggests magnetic frustration in the ground state. Our findings provide a novel material platform hosting a coexistence of itinerant electron and frustrated magnetism in a vdW system, where exotic phenomena arising from rich interplay between spin, charge and lattice in low dimension can be explored.
The layered compound KCu$_3$As$_2$O$_7$(OD)$_3$, comprising distorted kagome planes of $S=1/2$ Cu$^{2+}$ ions, is a recent addition to the family of type-II multiferroics. Previous zero field neutron diffraction work has found two helically ordered r egimes in kns, each showing a distinct coupling between the magnetic and ferroelectric order parameters. Here, we extend this work to magnetic fields up to $20$~T using neutron powder diffraction, capacitance, polarization, and high-field magnetization measurements, hence determining the $H-T$ phase diagram. We find metamagnetic transitions in both low temperatures phases around $mu_0 H_c sim 3.7$~T, which neutron powder diffraction reveals to correspond to a rotation of the helix plane away from the easy plane, as well as a small change in the propagation vector. Furthermore, we show that the sign of the ferroelectric polarization is reversible in a magnetic field, although no change is observed (or expected on the basis of the magnetic structure) due to the transition at $3.7$~T. We finally justify the temperature dependence of the polarization in both zero-field ordered phases by a symmetry analysis of the free energy expansion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا