ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of an unbiased asteroid survey in the mid-infrared wavelength with the Infrared Camera (IRC) onboard the Japanese infrared satellite AKARI. About 20% of the point source events recorded in the AKARI All-Sky Survey observations are not used for the IRC Point Source Catalog (IRC-PSC) in its production process because of the lack of multiple detection by position. Asteroids, which are moving objects on the celestial sphere, remain in these residual events. We identify asteroids out of the residual events by matching them with the positions of known asteroids. For the identified asteroids, we calculate the size and albedo based on the Standard Thermal Model. Finally we have a brand-new catalog of asteroids, named the Asteroid Catalog Using Akari (AcuA), which contains 5,120 objects, about twice as many as the IRAS asteroid catalog. The catalog objects comprise 4,953 main belt asteroids, 58 near Earth asteroids, and 109 Jovian Trojan asteroids. The catalog will be publicly available via the Internet.
Comet C/2007 N3 (Lulin) was observed with the Japanese infrared satellite AKARI in the near-infrared at a post-perihelion heliocentric distance of 1.7 AU. Observations were performed with the spectroscopic (2.5--5.0 micron) and imaging (2.4, 3.2, and 4.1 micron) modes on 2009 March 30 and 31 UT, respectively. AKARI images of the comet exhibit a sunward crescent-like shape coma and a dust tail extended toward the anti-solar direction. The 4.1 micron image (CO/CO2 and dust grains) shows a distribution different from the 2.4 and 3.2 micron images (H2O and dust grains). The observed spectrum shows distinct bands at 2.66 and 4.26 micron, attributed to H2O and CO2, respectively. This is the fifth comet in which CO2 has been directly detected in the near-infrared spectrum. In addition, CO at 4.67 micron and a broad 3.2--3.6 micron emission band from C-H bearing molecules were detected in the AKARI spectrum. The relative abundance ratios CO2/H2O and CO/H2O derived from the molecular production rates are sim 4%--5% and < 2%, respectively. Comet Lulin belongs to the group that has relatively low abundances of CO and CO2 among the comets observed ever.
We analyzed the Subaru/Suprime-Cam images of 73P/Schwassmann-Wachmann 3B and detected no fewer than 154 mini-comets. We applied synchrone-syndyne analysis, modified for rocket effect analysis, to the mini-fragment spatial distribution. We found that most of these mini-comets were ejected from fragment B by an outburst occurring around 1 April 2006. The ratio of the rocket force to solar gravity was 7 to 23 times larger than that exerted on fragment B. No significant color variation was found. We examined the surface brightness profiles of all detected fragments and estimated the sizes of 154 fragments. We found that the radius of these mini-fragments was in the 5- to 108-m range (equivalent size of Tunguska impactor). The power-law index of the differential size distribution was q = -3.34 +/- 0.05. Based on this size distribution, we found that about 1-10% of the mass of fragment B was lost in the April 2006 outbursts. Modeling the cometary fragment dynamics revealed that it is likely that mini-fragments smaller than ~10-20 m could be depleted in water ice and become inactive, implying that decameter-sized comet fragments could survive against melting and remain as near-Earth objects. We attempted to detect the dust trail, which was clearly found in infrared wavelengths by Spitzer. No brightness enhancement brighter than 30.0 mag arcsec^-2 (3sigma) was detected in the orbit of fragment B.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا