ترغب بنشر مسار تعليمي؟ اضغط هنا

Massive early-type galaxies commonly have gas discs which are kinematically misaligned with the stellar component. These discs feel a torque from the stars and the angular momentum vectors are expected to align quickly. We present results on the evol ution of a misaligned gas disc in a cosmological simulation of a massive early-type galaxy from the Feedback In Realistic Environments project. This galaxy experiences a merger which, together with a strong galactic wind, removes most of the original gas disc. The galaxy subsequently reforms a gas disc through accretion of cold gas, but it is initially 120 degrees misaligned with the stellar rotation axis. This misalignment persists for about 2 Gyr before the gas-star misalignment angle drops below 20 degrees. The time it takes for the gaseous and stellar components to align is much longer than previously thought, because the gas disc is accreting a significant amount of mass for about 1.5 Gyr after the merger, during which the angular momentum change induced by accreted gas dominates over that induced by stellar torques. Once the gas accretion rate has decreased sufficiently, the gas disc decouples from the surrounding halo gas and realigns with the stellar component in about 6 dynamical times. During the late evolution of the misaligned gas disc, the centre aligns faster than the outskirts, resulting in a warped disc. We discuss the observational consequences of the long survival of our misaligned gas disc and how our results can be used to calibrate merger rate estimates from observed gas misalignments.
We quantify the stellar abundances of neutron-rich r-process nuclei in cosmological zoom-in simulations of a Milky Way-mass galaxy from the Feedback In Realistic Environments project. The galaxy is enriched with r-process elements by binary neutron s tar (NS) mergers and with iron and other metals by supernovae. These calculations include key hydrodynamic mixing processes not present in standard semi-analytic chemical evolution models, such as galactic winds and hydrodynamic flows associated with structure formation. We explore a range of models for the rate and delay time of NS mergers, intended to roughly bracket the wide range of models consistent with current observational constraints. We show that NS mergers can produce [r-process/Fe] abundance ratios and scatter that appear reasonably consistent with observational constraints. At low metallicity, [Fe/H]<-2, we predict there is a wide range of stellar r-process abundance ratios, with both supersolar and subsolar abundances. Low-metallicity stars or stars that are outliers in their r-process abundance ratios are, on average, formed at high redshift and located at large galactocentric radius. Because NS mergers are rare, our results are not fully converged with respect to resolution, particularly at low metallicity. However, the uncertain rate and delay time distribution of NS mergers introduces an uncertainty in the r-process abundances comparable to that due to finite numerical resolution. Overall, our results are consistent with NS mergers being the source of most of the r-process nuclei in the Universe.
(Abridged) A large fraction of the gas in galactic haloes has temperatures between 10^4.5 and 10^7 K. At these temperatures, cooling is dominated by metal-line emission if the metallicity Z>~0.1 Zsun. We explore the detectability of several lines usi ng large cosmological, hydrodynamical simulations. We stack surface brightness maps centred on galaxies to calculate the expected mean surface brightness profiles for different halo masses. Assuming a detection limit of 10^-1 photon s^-1 cm^-2 sr^-1, proposed X-ray telescopes can detect O VIII emission from z=0.125 out to 80% of the virial radius (Rvir) of groups and clusters and out to 0.4Rvir for haloes with masses Mhalo=10^12-13 Msun. Emission lines from C VI, N VII, O VII, and Ne X can be detected out to smaller radii, 0.1-0.5Rvir. With a detection limit of 10^-20 erg s^-1 cm^-2 arcsec^-2, future UV telescopes can detect C III emission out to 0.2-0.6Rvir at z=0.25. C IV, O VI, Si III, and Si IV can be seen out to 0.1-0.2Rvir for Mhalo>10^12 Msun. Optical HI H-alpha emission is comparable in strength to C III emission. At z=3 it may be possible to observe C III out to 0.2-0.3Rvir and other rest-frame UV lines out to ~0.1Rvir for Mhalo>10^11 Msun with upcoming optical instruments. Metal-line emission is typically biased towards high density and metallicity and towards the temperature at which the emissivity curve of the corresponding metal line peaks. The bias is similar for the different soft X-ray lines considered, whereas it varies strongly between different UV lines. Active galactic nucleus (AGN) feedback can change the inner surface brightness profiles significantly, but it generally does not change the radius out to which the emission can be observed. Metal-line emission is a promising probe of the warm and hot, enriched gas around galaxies and provides a unique window into the interactions between galaxies and their gaseous haloes.
We study the properties of gas inside and around galaxy haloes as a function of radius and halo mass, focussing mostly on z=2, but also showing some results for z=0. For this purpose, we use a suite of large cosmological, hydrodynamical simulations f rom the OverWhelmingly Large Simulations project. The properties of cold- and hot-mode gas, which we separate depending on whether the temperature has been higher than 10^5.5 K while it was extragalactic, are clearly distinguishable in the outer parts of massive haloes (virial temperatures >> 10^5 K. The differences between cold- and hot-mode gas resemble those between inflowing and outflowing gas. The cold-mode gas is mostly confined to clumpy filaments that are approximately in pressure equilibrium with the diffuse, hot-mode gas. Besides being colder and denser, cold-mode gas typically has a much lower metallicity and is much more likely to be infalling. However, the spread in the properties of the gas is large, even for a given mode and a fixed radius and halo mass, which makes it impossible to make strong statements about individual gas clouds. Metal-line cooling causes a strong cooling flow near the central galaxy, which makes it hard to distinguish gas accreted through the cold and hot modes in the inner halo. Stronger feedback results in larger outflow velocities and pushes hot-mode gas to larger radii. The gas properties evolve as expected from virial arguments, which can also account for the dependence of many gas properties on halo mass. We argue that cold streams penetrating hot haloes are observable as high-column density HI Lyman-alpha absorption systems in sightlines near massive foreground galaxies.
Simulations predict that galaxies grow primarily through the accretion of gas that has not gone through an accretion shock near the virial radius and that this cold gas flows towards the central galaxy along dense filaments and streams. There is, how ever, little observational evidence for the existence of these cold flows. We use a large, cosmological, hydrodynamical simulation that has been post-processed with radiative transfer to study the contribution of cold flows to the observed z=3 column density distribution of neutral hydrogen, which our simulation reproduces. We find that nearly all of the HI absorption arises in gas that has remained colder than 10^5.5 K, at least while it was extragalactic. In addition, the majority of the HI is rapidly falling towards a nearby galaxy, with non-negligible contributions from outflowing and static gas. Above a column density of N_HI = 10^17 cm^-2, most of the absorbers reside inside haloes, but the interstellar medium only dominates for N_HI > 10^21 cm^-2. Haloes with total mass below 10^10 Msun dominate the absorption for 10^17<N_HI < 10^21 cm^-2, but the average halo mass increases sharply for higher column densities. Although very little of the HI in absorbers with N_HI <~ 10^20 cm^-2 resides inside galaxies, systems with N_HI > 10^17 cm^-2 are closely related to star formation: most of their HI either will become part of the interstellar medium before z=2 or has been ejected from a galaxy at z>3. Cold accretion flows are critical for the success of our simulation in reproducing the observed rate of incidence of damped Lyman-alpha and particularly that of Lyman limit systems. We therefore conclude that cold accretion flows exist and have already been detected in the form of high column density HI absorbers.
The cosmic star formation rate is observed to drop sharply after redshift z=2. We use a large, cosmological, smoothed particle hydrodynamics simulation to investigate how this decline is related to the evolution of gas accretion and to outflows drive n by active galactic nuclei (AGN). We find that the drop in the star formation rate follows a corresponding decline in the global cold-mode accretion rate density onto haloes, but with a delay of order the gas consumption time scale in the interstellar medium. Here we define cold-mode (hot-mode) accretion as gas that is accreted and whose temperature has never exceeded (did exceed) 10^5.5 K. In contrast to cold-mode accretion, which peaks at z~3, the hot mode continues to increase to z~1 and remains roughly constant thereafter. By the present time, the hot mode strongly dominates the global accretion rate onto haloes. Star formation does not track hot-mode halo accretion because most of the hot halo gas never accretes onto galaxies. AGN feedback plays a crucial role by preferentially preventing gas that entered haloes in the hot mode from accreting onto their central galaxies. Consequently, in the absence of AGN feedback, gas accreted in the hot mode would become the dominant source of fuel for star formation and the drop off in the cosmic star formation rate would be much less steep.
(Abridged) We study the rate at which gas accretes onto galaxies and haloes and investigate whether the accreted gas was shocked to high temperatures before reaching a galaxy. For this purpose we use a suite of large cosmological, hydrodynamical simu lations from the OWLS project. We improve on previous work by considering a wider range of halo masses and redshifts, by distinguishing accretion onto haloes and galaxies, by including important feedback processes, and by comparing simulations with different physics. The specific rate of gas accretion onto haloes is, like that for dark matter, only weakly dependent on halo mass. For halo masses Mhalo>>10^11 Msun it is relatively insensitive to feedback processes. In contrast, accretion rates onto galaxies are determined by radiative cooling and by outflows driven by supernovae and active galactic nuclei. Galactic winds increase the halo mass at which the central galaxies grow the fastest by about two orders of magnitude to Mhalo~10^12 Msun. Gas accretion is bimodal, with maximum past temperatures either of order the virial temperature or <~10^5 K. The fraction of gas accreted on to haloes in the hot mode is insensitive to feedback and metal-line cooling. It increases with decreasing redshift, but is mostly determined by halo mass, increasing gradually from less than 10% for ~10^11 Msun to greater than 90% at 10^13 Msun. In contrast, for accretion onto galaxies the cold mode is always significant and the relative contributions of the two accretion modes are more sensitive to feedback and metal-line cooling. The majority of stars present in any mass halo at any redshift were formed from gas accreted in the cold mode, although the hot mode contributes typically over 10% for Mhalo>~10^11 Msun. Galaxies, but not necessarily their gaseous haloes, are predominantly fed by gas that did not experience an accretion shock when it entered the host halo.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا