ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent experiments on the Ba$_3$XSb$_2$O$_9$ family have revealed materials that potentially realise spin- and spin-orbital liquid physics. However, the lattice structure of these materials is complicated due to the presence of charged X$^{2+}$-Sb$^{ 5+}$ dumbbells, with two possible orientations. To model the lattice structure, we consider a frustrated model of charged dumbbells on the triangular lattice, with long-range Coulomb interactions. We study this model using Monte Carlo simulation, and find a freezing temperature, $T_{sf frz}$, at which the simulated structure factor matches well to low-temperature x-ray diffraction data for Ba$_3$CuSb$_2$O$_9$. At $T=T_{sf frz}$ we find a complicated ``branching structure of superexchange-linked X$^{2+}$ clusters, and show that this gives a natural explanation for the presence of orphan spins. Finally we provide a plausible mechanism by which such dumbbell disorder can promote a spin-orbital resonant state with delocalised orphan spins.
Building on advanced results on permutations, we show that it is possible to construct, for each irreducible representation of SU(N), an orthonormal basis labelled by the set of {it standard Young tableaux} in which the matrix of the Heisenberg SU(N) model (the quantum permutation of N-color objects) takes an explicit and extremely simple form. Since the relative dimension of the full Hilbert space to that of the singlet space on $n$ sites increases very fast with N, this formulation allows to extend exact diagonalizations of finite clusters to much larger values of N than accessible so far. Using this method, we show that, on the square lattice, there is long-range color order for SU(5), spontaneous dimerization for SU(8), and evidence in favor of a quantum liquid for SU(10).
Motivated by the absence of both spin freezing and a cooperative Jahn-Teller effect at the lowest measured temperatures, we study the ground state of Ba3CuSb2O9. We solve a general spin-orbital model on both the honeycomb and the decorated honeycomb lattice, revealing rich phase diagrams. The spin-orbital model on the honeycomb lattice contains an SU(4) point, where previous studies have shown the existence of a spin-orbital liquid with algebraically decaying correlations. For realistic parameters on the decorated honeycomb lattice, we find a phase that consists of clusters of nearest-neighbour spin singlets, which can be understood in terms of dimer coverings of an emergent square lattice. While the experimental situation is complicated by structural disorder, we show qualitative agreement between our theory and a range of experiments.
Ground states of the frustrated spin-1 Ising-Heisenberg two-leg ladder with Heisenberg intra-rung coupling and only Ising interaction along legs and diagonals are rigorously found by taking advantage of local conservation of the total spin on each ru ng. The constructed ground-state phase diagram of the frustrated spin-1 Ising-Heisenberg ladder is then compared with the analogous phase diagram of the fully quantum spin-1 Heisenberg two-leg ladder obtained by density matrix renormalization group (DMRG) calculations. It is demonstrated that both investigated spin models exhibit quite similar magnetization scenarios, which involve intermediate plateaux at one-quarter, one-half and three-quarters of the saturation magnetization.
We investigate the properties of antiferromagnetic spin-S ladders with the help of local Berry phases defined by imposing a twist on one or a few local bonds. In gapped systems with time reversal symmetry, these Berry phases are quantized, hence able in principle to characterize different phases. In the case of a fully frustrated ladder where the total spin on a rung is a conserved quantity that changes abruptly upon increasing the rung coupling, we show that two Berry phases are relevant to detect such phase transitions: the rung Berry phase defined by imposing a twist on one rung coupling, and the twist Berry phase defined by twisting the boundary conditions along the legs. In the case of non-frustrated ladders, we have followed the fate of both Berry phases when interpolating between standard ladders and dimerized spin chains. A careful investigation of the spin gap and of edge states shows that a change of twist Berry phase is associated to a quantum phase transition at which the bulk gap closes, and at which, with appropriate boundary conditions, edge states appear or disappear, while a change of rung Berry phase is not necessarily associated to a quantum phase transition. The difference is particularly acute for regular ladders, in which the twist Berry phase does not change at all upon increasing the rung coupling from zero to infinity while the rung Berry phase changes 2S times. By analogy with the fully frustrated ladder, these changes are interpreted as cross-overs between domains in which the rungs are in different states of total spin from 0 in the strong rung limit to 2S in the weak rung limit. This interpretation is further supported by the observation that these cross-overs turn into real phase transitions as a function of rung coupling if one rung is strongly ferromagnetic, or equivalently if one rung is replaced by a spin 2S impurity.
The ground state and zero-temperature magnetization process of the spin-1/2 Ising-Heisenberg model on two-dimensional triangles-in-triangles lattices is exactly calculated using eigenstates of the smallest commuting spin clusters. Our ground-state an alysis of the investigated classical--quantum spin model reveals three unconventional dimerized or trimerized quantum ground states besides two classical ground states. It is demonstrated that the spin frustration is responsible for a variety of magnetization scenarios with up to three or four intermediate magnetization plateaus of either quantum or classical nature. The exact analytical results for the Ising-Heisenberg model are confronted with the corresponding results for the purely quantum Heisenberg model, which were obtained by numerical exact diagonalizations based on the Lanczos algorithm for finite-size spin clusters of 24 and 21 sites, respectively. It is shown that the zero-temperature magnetization process of both models is quite reminiscent and hence, one may obtain some insight into the ground states of the quantum Heisenberg model from the rigorous results for the Ising-Heisenberg model even though exact ground states for the Ising-Heisenberg model do not represent true ground states for the pure quantum Heisenberg model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا