ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a detailed low-temperature thermodynamic investigation (heat capacity and magnetization) of the superconducting state of KFe2As2 for H || c axis. Our measurements reveal that the properties of KFe2As2 are dominated by a relatively large nod eless energy gap (Delta?0 = 1.9 kBTc) which excludes dx2-y2 symmetry. We prove the existence of several additional extremely small gaps (?Delta0 < 1.0 kBTc) that have a profound impact on the low-temperature and low-field behavior, similar to MgB2, CeCoIn5 and PrOs4Sb12. The zero-field heat capacity is analyzed in a realistic self-consistent 4-band BCS model which qualitatively reproduces the recent laser ARPES results of Okazaki et al. (Science 337 (2012) 1314). Our results show that extremely low-temperature measurements, i.e. T < 0.1 K, will be required in order to resolve the question of the existence of line nodes in this compound.
We report specific-heat experiments under the influence of high pressure on a strongly underdoped Co-substituted BaFe2As2 single crystal. This allows us to study the phase diagram of this iron pnictide superconductor with a bulk thermodynamic method and pressure as a clean control parameter. The data show large specific-heat anomalies at the superconducting transition temperature, which proves the bulk nature of pressure-induced superconductivity. The transitions in the specific heat are sharper than in resistivity, which demonstrates the necessity of employing bulk thermodynamic methods to explore the exact phase diagram of pressure-induced Fe-based superconductors. The Tc at optimal pressure and the superconducting condensation energy are found to be larger than in optimally Co-doped samples at ambient pressure, which we attribute to a weak pair breaking effect of the Co ions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا