ترغب بنشر مسار تعليمي؟ اضغط هنا

102 - Frederic Buda 2007
This paper describes how automatically generated detailed kinetic mechanisms are obtained for the oxidation of alkanes and how these models could lead to a better understanding of autoignition and cool flame risks at elevated conditions. Examples of prediction of the occurrence of different autoignition phenomena, such as cool flames or two-stage ignitions are presented depending on the condition of pressure, temperature and mixture composition. Three compounds are treated, a light alkane, propane, and two heavier ones, n-heptane and n-decane.
56 - Frederic Buda 2007
This paper presents a modeling study of the oxidation of cyclohexane from low to intermediate temperature (650-1050 K), including the negative temperature coefficient (NTC) zone. A detailed kinetic mechanism has been developed using computer-aided ge neration. This comprehensive low-temperature mechanism involves 513 species and 2446 reactions and includes two additions of cyclohexyl radicals to oxygen, as well as subsequent reactions. The rate constants of the reactions involving the formation of bicyclic species (isomerizations, formation of cyclic ethers) have been evaluated from literature data. This mechanism is able to satisfactorily reproduce experimental results obtained in a rapid-compression machine for temperatures ranging from 650 to 900 K and in a jet-stirred reactor from 750 to 1050 K. Flow-rate analyses have been performed at low and intermediate temperatures.
110 - Baptiste Sirjean 2007
Ignition delay times of cyclohexane-oxygen-argon and cyclopentane-oxygen-argon mixtures have been measured in a shock tube, the onset of ignition being detected by OH radical emission. Mixtures contained 0.5 or 1 % of hydrocarbon for equivalence rati os ranging from 0.5 to 2. Reflected shock waves allowed temperatures from 1230 to 1800 K and pressures from 7.3 to 9.5 atm to be obtained. These measurements have shown that cyclopentane is much less reactive than cyclohexane, as for a given temperature the observed autoignition delay times were about ten times higher for the C5 compound compared to the C6. Detailed mechanisms for the combustion of cyclohexane and cyclopentane have been proposed to reproduce these results. The elementary steps included in the kinetic models of the oxidation of cyclanes are close to those proposed to describe the oxidation of acyclic alkanes and alkenes. Consequently, it has been possible to obtain these models by using an improved version of software EXGAS, a computer package developed to perform the automatic generation of detailed kinetic models for the gas-phase oxidation and combustion of linear and branched alkanes and alkenes. Nevertheless, the modelling of the oxidation of cyclanes requires to consider new types of generic reactions, and especially to define new correlations for the estimation of the rate constants. Ab initio calculations have been used to better know some of the rate constants used in the case of cyclopentane. The main reaction pathways have been derived from flow rate and sensitivity analyses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا