ترغب بنشر مسار تعليمي؟ اضغط هنا

Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depe nding on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir-Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems.
Self-diffusion and radial distribution functions are studied in a strongly confined Lennard-Jones fluid. Surprisingly, in the solid-liquid phase transition region, where the system exhibits dynamic coexistence, the self-diffusion constants are shown to present up to three-fold variations from solid to liquid phases at fixed temperature, while the radial distribution function corresponding to both the liquid and the solid phases are essentially indistinguishable.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا