ترغب بنشر مسار تعليمي؟ اضغط هنا

126 - Jeff Wagg 2009
We present the radio and X-ray properties of 1.2 mm MAMBO source candidates in a 1600 sq. arcmin field centered on the Abell 2125 galaxy cluster at z=0.247. The brightest, non-synchrotron mm source candidate in the field has a photometric redshift, z = 3.93^+1.11_-0.80, and is not detected in a 31 ks Chandra X-ray exposure. These findings are consistent with this object being an extremely dusty and luminous starburst galaxy at high-redshift, possibly the most luminous yet identified in any blank-field mm survey. The deep 1.4 GHz VLA imaging identifies counterparts for 83% of the 29 mm source candidates identified at >=4-sigma S(1.2mm) = 2.7 - 52.1 mJy, implying that the majority of these objects are likely to lie at z <~ 3.5. The median mm-to-radio wavelength photometric redshift of this radio-detected sample is z~2.2 (first and third quartiles of 1.7 and 3.0), consistent with the median redshift derived from optical spectroscopic surveys of the radio-detected subsample of bright submm galaxies (S(850um) > 5 mJy). Three mm-selected quasars are confirmed to be X-ray luminous in the high resolution Chandra imaging, while another mm source candidate with potential multiple radio counterparts is also detected in the X-ray regime. Both of these radio counterparts are positionally consistent with the mm source candidate. One counterpart is associated with an elliptical galaxy at z = 0.2425, but we believe that a second counterpart associated with a fainter optical source likely gives rise to the mm emission at z~1.
When and how did galaxies form and their metals accumulate? Over the last decade, this has moved from an archeological question to a live investigation: there is now a broad picture of the evolution of galaxies in dark matter halos: their masses, sta rs, metals and supermassive blackholes. Galaxies have been found and studied in which these formation processes are taking place most vigorously, all the way back in cosmic time to when the intergalactic medium (IGM) was still largely neutral. However, the details of how and why the interstellar medium (ISM) in distant galaxies cools, is processed, recycled and enriched in metals by stars, and fuels active galactic nuclei (AGNs) remain uncertain. In particular, the cooling of gas to fuel star formation, and the chemistry and physics of the most intensely active regions is hidden from view at optical wavelengths, but can be seen and diagnosed at mid- & far-infrared (IR) wavelengths. Rest-frame IR observations are important first to identify the most luminous, interesting and important galaxies, secondly to quantify accurately their total luminosity, and finally to use spectroscopy to trace the conditions in the molecular and atomic gas out of which stars form. In order to map out these processes over the full range of environments and large-scale structures found in the universe - from the densest clusters of galaxies to the emptiest voids - we require tools for deep, large area surveys, of millions of galaxies out to z~5, and for detailed follow-up spectroscopy. The necessary tools can be realized technically. Here, we outline the requirements for gathering the crucial information to build, validate and challenge models of galaxy evolution.
Using the IRAM 30m telescope, we have detected the CO J=2-1, 4-3, 5-4, and 6-5 emission lines in the millimeter-bright, blank-field selected AGN COSMOS J100038+020822 at redshift z=1.8275. The sub-local thermodynamic equilibrium (LTE) excitation of t he J=4 level implies that the gas is less excited than that in typical nearby starburst galaxies such as NGC253, and in the high-redshift quasars studied to date, such as J1148+5251 or BR1202-0725. Large velocity gradient (LVG) modeling of the CO line spectral energy distribution (CO SED; flux density vs. rotational quantum number) yields H2 densities in the range 10^{3.5}--10^{4.0} cm-3, and kinetic temperatures between 50 K and 200 K. The H2 mass of (3.6 - 5.4) x 10^{10} M_sun implied by the line intensities compares well with our estimate of the dynamical mass within the inner 1.5 kpc of the object. Fitting a two-component gray body spectrum, we find a dust mass of 1.2 x 10^{9} M_sun, and cold and hot dust temperatures of 42+/-5 K and 160+/-25 K, respectively. The broad MgII line allows us to estimate the mass of the central black hole as 1.7 x 10^{9} M_sun. Although the optical spectrum and multi-wavelength SED matches those of an average QSO, the molecular gas content and dust properties resemble those of known submillimeter galaxies (SMGs). The optical morphology of this source shows tidal tails that suggest a recent interaction or merger. Since it shares properties of both starburst and AGN, this object appears to be in a transition from a strongly starforming submillimeter galaxy to a QSO.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا