ترغب بنشر مسار تعليمي؟ اضغط هنا

A new solution for an analytic spectrum of particle creation by an accelerating mirror (dynamical Casimir effect) is given. It is the first model to simultaneously radiate thermally and emit a finite number of particles.
131 - Frank Wilczek 2021
I extend, apply, and generalize a model of a quantum radiator proposed by Griffiths to construct models of radiation fields that exhibit high entropy for long periods of time but approach pure states asymptotically. The models, which are fully consis tent with the basic principles of quantum theory, provide coarse-grained models of both realistic physical systems and exotic space-times including black and white holes and baby and prodigal universes. Their analysis suggests experimental probes of some basic but subtle implications of quantum theory including interference between a particle and its own past, influence of quantum statistical entanglement on entropy flow, and residual entanglement connecting distant radiation with a degenerate source.
Interesting problems in quantum computation take the form of finding low-energy states of (pseudo)spin systems with engineered Hamiltonians that encode the problem data. Motivated by the practical possibility of producing very low-temperature spin sy stems, we propose and exemplify the possibility to compute by coupling the computational spins to a non-Markovian bath of spins that serve as a heat sink. We demonstrate both analytically and numerically that this strategy can achieve quantum advantage in the Grover search problem.
We propose an exact model of anyon ground states including higher Landau levels, and use it to obtain fractionally quantized Hall states at filling fractions $ u=p/(p(m-1)+1)$ with $m$ odd, from integer Hall states at $ u=p$ through adiabatic localiz ation of magnetic flux. For appropriately chosen two-body potential interactions, the energy gap remains intact during the process. The construction hence establishes the existence of incompressible states at these fillings.
We develop a formalism to calculate the response of a model gravitational wave detector to a quantized gravitational field. Coupling a detector to a quantum field induces stochastic fluctuations (noise) in the length of the detector arm. The statisti cal properties of this noise depend on the choice of quantum state of the gravitational field. We characterize the noise for vacuum, coherent, thermal, and squeezed states. For coherent states, corresponding to classical gravitational configurations, we find that the effect of gravitational field quantization is small. However, the standard deviation in the arm length can be enhanced -- possibly significantly -- when the gravitational field is in a non-coherent state. The detection of this fundamental noise could provide direct evidence for the quantization of gravity and for the existence of gravitons.
For the purpose of analyzing observed phenomena, it has been convenient, and thus far sufficient, to regard gravity as subject to the deterministic principles of classical physics, with the gravitational field obeying Newtons law or Einsteins equatio ns. Here we treat the gravitational field as a quantum field and determine the implications of such treatment for experimental observables. We find that falling bodies in gravity are subject to random fluctuations (noise) whose characteristics depend on the quantum state of the gravitational field. We derive a stochastic equation for the separation of two falling particles. Detection of this fundamental noise, which may be measurable at gravitational wave detectors, would vindicate the quantization of gravity, and reveal important properties of its sources.
We present a quantum algorithm for approximating maximum independent sets of a graph based on quantum non-Abelian adiabatic mixing in the sub-Hilbert space of degenerate ground states, which generates quantum annealing in a secondary Hamiltonian. For both sparse and dense graphs, our quantum algorithm on average can find an independent set of size very close to $alpha(G)$, which is the size of the maximum independent set of a given graph $G$. Numerical results indicate that an $O(n^2)$ time complexity quantum algorithm is sufficient for finding an independent set of size $(1-epsilon)alpha(G)$. The best classical approximation algorithm can produce in polynomial time an independent set of size about half of $alpha(G)$.
We show that when the gravitational field is treated quantum-mechanically, it induces fluctuations -- noise -- in the lengths of the arms of gravitational wave detectors. The characteristics of the noise depend on the quantum state of the gravitation al field, and can be calculated exactly in several interesting cases. For coherent states the noise is very small, but it can be greatly enhanced in thermal and (especially) squeezed states. Detection of this fundamental noise would constitute direct evidence for the quantization of gravity and the existence of gravitons.
We present an algorithm for the generalized search problem (searching $k$ marked items among $N$ items) based on a continuous Hamiltonian and exploiting resonance. This resonant algorithm has the same time complexity $O(sqrt{N/k})$ as the Grover algo rithm. A natural extension of the algorithm, incorporating auxiliary monitor qubits, can determine $k$ precisely, if it is unknown. The time complexity of our counting algorithm is $O(sqrt{N})$, similar to the best quantum approximate counting algorithm, or better, given appropriate physical resources.
Electrons in Type II Weyl semimetals display one-way propagation, which supports totally reflecting behavior at an endpoint, as one has for black hole horizons viewed from the inside. Junctions of Type I and Type II lead to equations identical to wha t one has near black hole horizons, but the physical implications, we suggest, are quite different from expectations which are conventional in that context. The time-reversed, white hole configuration is also physically accessible.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا