ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of combining Hubble Space Telescope optical photometry with ground-based Ks-band photometry from the Gemini imagers NIRI and FLAMINGOS-I to study the globular-cluster populations in four early-type galaxies that are candidate r emnants of recent mergers (NGC1700, NGC2865, NGC4382, and NGC7727). These galaxies were chosen based on their blue colors and fine structure, such as shells and ripples that are indicative of past interactions. We fit the combined VIKs globular-cluster data with simple toy models of mixed cluster populations that contain three subpopulations of different age and metallicity. The fits, done via Chi-square mapping of the parameter space, yield clear evidence for the presence of intermediate-age clusters in each galaxy. We find that the ages of 1-2 Gyr for these globular-cluster subpopulations are consistent with the previously estimated merger ages for the host galaxies.
We present images and spectra of a ~10 kpc-sized emission-line nebulosity discovered in the prototypical merger remnant NGC 7252 and dubbed the `[O III] nebula because of its dominant [O III]_5007 line. This nebula seems to yield the first sign of ep isodic AGN activity still occurring in the remnant, ~220 Myr after the coalescence of two gas-rich galaxies. Its location and kinematics suggest it belongs to a stream of tidal-tail gas falling back into the remnant. Its integrated [O III]_5007 luminosity is 1.4x10^40 erg/s, and its spectrum features some high-excitation lines, including He II_4686. In diagnostic line- ratio diagrams, the nebula lies in the domain of Seyfert galaxies, suggesting that it is photoionized by a source with a power-law spectrum. Yet, a search for AGN activity in NGC 7252 from X-rays to radio wavelengths yields no detection, with the most stringent upper limit set by X-ray observations. The upper luminosity limit of L_{2-10 keV,0} < 5x10^39 erg/s estimated for the nucleus is ~10^3 times lower than the minimum ionizing luminosity of >5x10^42 erg/s necessary to excite the nebula. This large discrepancy suggests that the nebula is a faint ionization echo excited by a mildly active nucleus that has declined by ~3 orders of magnitude over the past 20,000-200,000 years. In many ways this nebula resembles the prototypical `Hannys Voorwerp near IC 2497, but its size is 3x smaller and its [O III] luminosity ~100x lower. We propose that it be classified as an extended emission-line region (EELR). The [O III] nebula is then the lowest-luminosity ionization echo and EELR discovered so far, indicative of recent, probably sputtering AGN activity of Seyfert-like intensity in NGC 7252.
Allan Sandage was an observational astronomer who was happiest at a telescope. On Hubbles sudden death Allan Sandage inherited the programmes using the worlds largest optical telescope at Palomar to determine the distances and number counts of galaxi es. Over many years he greatly revised the distance scale and, on re-working Hubbles analysis, discovered the error that had led Hubble to doubt the interpretation of the galaxies redshifts as an expansion of the universe. Sandage showed that there was a consistent age of Creation for the stars, the elements, and the Cosmos. Through work with Baade and Schwarzschild he discovered the key to the interpretation of the colour-magnitude diagrams of star clusters in terms of stellar evolution. With others he founded Galactic Archaeology, interpreting the motions and elemental abundances of the oldest stars in terms of a model for the Galaxys formation. He published several fine atlasses and catalogues of galaxies and a definitive history of the Mount Wilson Observatory.
The ACS and NICMOS have been used to obtain new HST images of NGC 4038/4039 (The Antennae). These new observations allow us to better differentiate compact star clusters from individual stars, based on both size and color. We use this ability to exte nd the cluster luminosity function by approximately two magnitudes over our previous WFPC2 results, and find that it continues as a single power law, dN/dL propto L^alpha with alpha=-2.13+/-0.07, down to the observational limit of Mv~-7. Similarly, the mass function is a single power law dN/dM propto M^beta with beta=-2.10+/-0.20 for clusters with ages t<3x10^8 yr, corresponding to lower mass limits that range from 10^4 to 10^5 Msun, depending on the age range of the subsample. Hence the power law indices for the luminosity and mass functions are essentially the same. The luminosity function for intermediate-age clusters (i.e., ~100-300 Myr old objects found in the loops, tails, and outer areas) shows no bend or turnover down to Mv~-6, consistent with relaxation-driven cluster disruption models which predict the turnover should not be observed until Mv~-4. An analysis of individual ~0.5-kpc sized areas over diverse environments shows good agreement between values of alpha and beta, similar to the results for the total population of clusters in the system. Several of the areas studied show evidence for age gradients, with somewhat older clusters appearing to have triggered the formation of younger clusters. The area around Knot B is a particularly interesting example, with an ~10-50 Myr old cluster of estimated mass ~10^6 Msun having apparently triggered the formation of several younger, more massive (up to 5x10^6 Msun) clusters along a dust lane.
Traditionally, the distance to NGC 4038/39 has been derived from the systemic recession velocity, yielding about 20 Mpc for H_0 = 72 km/s/Mpc. Recently, this widely adopted distance has been challenged based on photometry of the presumed tip of the r ed giant branch (TRGB), which seems to yield a shorter distance of 13.3+-1.0 Mpc and, with it, nearly 1 mag lower luminosities and smaller radii for objects in this prototypical merger. Here we present a new distance estimate based on observations of the Type Ia supernova (SN) 2007sr in the southern tail, made at Las Campanas Observatory as part of the Carnegie Supernova Project. The resulting distance of D(SN Ia) = 22.3+-2.8 Mpc [(m-M)_0 = 31.74+-0.27 mag] is in good agreement with a refined distance estimate based on the recession velocity and the large-scale flow model developed by Tonry and collaborators, D(flow) = 22.5+-2.8 Mpc. We point out three serious problems that a short distance of 13.3 Mpc would entail, and trace the claimed short distance to a likely misidentification of the TRGB. Reanalyzing Hubble Space Telescope (HST) data in the Archive with an improved method, we find a TRGB fainter by 0.9 mag and derive from it a preliminary new TRGB distance of D(TRGB) = 20.0+-1.6 Mpc. Finally, assessing our three distance estimates we recommend using a conservative, rounded value of D = 22+-3 Mpc as the best currently available distance to The Antennae.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا