ترغب بنشر مسار تعليمي؟ اضغط هنا

In order to infer the impact of the small-scale physics to the large-scale properties of the universe, we use a series of cosmological $N$-body simulations of self-gravitating matter inhomogeneities to measure, for the first time, the response functi on of such a system defined as a functional derivative of the nonlinear power spectrum with respect to its linear counterpart. Its measured shape and amplitude are found to be in good agreement with perturbation theory predictions except for the coupling from small to large-scale perturbations. The latter is found to be significantly damped, following a Lorentzian form. These results shed light on validity regime of perturbation theory calculations giving a useful guideline for regularization of small scale effects in analytical modeling. Most importantly our result indicates that the statistical properties of the large-scale structure of the universe are remarkably insensitive to the details of the small-scale physics, astrophysical or gravitational, paving the way for the derivation of robust estimates of theoretical uncertainties on the determination of cosmological parameters from large-scale survey observations.
We show here how Renormalized Perturbation Theory (RPT) calculations applied to the quasi-linear growth of the large-scale structure can be carried on in presence of primordial non-Gaussian (PNG) initial conditions. It is explicitly demonstrated that the series reordering scheme proposed in Bernardeau, Crocce and Scoccimarro (2008) is preserved for non-Gaussian initial conditions. This scheme applies to the power spectrum and higher order spectra and is based on a reorganization of the contributing terms into sum of products of multi-point propagators. In case of PNG new contributing terms appear, the importance of which is discussed in the context of current PNG models. The properties of the building blocks of such resummation schemes, the multi-point propagators, are then investigated. It is first remarked that their expressions are left unchanged at one-loop order irrespectively of statistical properties of the initial field. We furthermore show that the high-momemtum limit of each of these propagators can be explicitly computed even for arbitrary initial conditions. They are found to be damped by an exponential cutoff whose expression is directly related to the moment generating function of the one-dimensional displacement field. This extends what had been established for multi-point propagators for Gaussian initial conditions. Numerical forms of the cut-off are shown for the so-called local model of PNG.
The contribution of cosmological perturbations to the time drift of the cosmological redshift is derived. It is shown that the dominant correction arises from the local acceleration of both the emitter and the observer. The amplitude of this effect i s estimated to be of the order of 1% of the drift signal at z=2-4, but can easily be lowered down to 0.1% by using many absorption lines and quasars.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا