ترغب بنشر مسار تعليمي؟ اضغط هنا

We derive exact formulae for the partition function and the expectation values of Wilson/t Hooft loops, thus directly checking their S-duality transformations. We focus on a special class of N=2 gauge theories on S^4 with fundamental matter. In parti cular we show that, for a specific choice of the masses, the matrix model integral defining the gauge theory partition function localizes around a finite set of critical points where it can be explicitly evaluated and written in terms of generalized hypergeometric functions. From the AGT perspective the gauge theory partition function, evaluated with this choice of masses, is viewed as a four point correlator involving the insertion of a degenerated field. The well known simplicity of the degenerated correlator reflects the fact that for these choices of masses only a very restrictive type of instanton configurations contributes to the gauge theory partition function.
We derive Seiberg-Witten like equations encoding the dynamics of N=2 ADE quiver gauge theories in presence of a non-trivial Omega-background along a two dimensional plane. The epsilon-deformed prepotential and the chiral correlators of the gauge theo ry are extracted from difference equations that can be thought as a non-commutative (or quantum) version of the Seiberg-Witten curves for the quiver.
We discuss a string model where a conformal four-dimensional N=2 gauge theory receives corrections to its gauge kinetic functions from stringy instantons. These contributions are explicitly evaluated by exploiting the localization properties of the i ntegral over the stringy instanton moduli space. The model we consider corresponds to a setup with D7/D3-branes in type I theory compactified on T4/Z2 x T2, and possesses a perturbatively computable heterotic dual. In the heteoric side the corrections to the quadratic gauge couplings are provided by a 1-loop threshold computation and, under the duality map, match precisely the first few stringy instanton effects in the type I setup. This agreement represents a very non-trivial test of our approach to the exotic instanton calculus.
We compute the partition functions of D(-1)D7 systems describing the multi-instanton dynamics of SO(N) gauge theories in eight dimensions. This is the simplest instance of the so called exotic instantons. In analogy with the Seiberg-Witten theory in four space-time dimensions, the prepotential and correlators in the chiral ring are derived via localization formulas and found to satisfy relations of the Matone type. Exotic prepotentials of SO(N) gauge theories with N=2 supersymmetries in four-dimensions are also discussed.
We study the non-perturbative dynamics of an unoriented Z_5-quiver theory of GUT kind with gauge group U(5) and chiral matter. At strong coupling the non-perturbative dynamics is described in terms of set of baryon/meson variables satisfying a quantu m deformed constraint. We compute the effective superpotential of the theory and show that it admits a line of supersymmetric vacua and a phase where supersymmetry is dynamically broken via gaugino condensation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا