ترغب بنشر مسار تعليمي؟ اضغط هنا

Operational networks are increasingly using machine learning models for a variety of tasks, including detecting anomalies, inferring application performance, and forecasting demand. Accurate models are important, yet accuracy can degrade over time du e to concept drift, whereby either the characteristics of the data change over time (data drift) or the relationship between the features and the target predictor change over time (model drift). Drift is important to detect because changes in properties of the underlying data or relationships to the target prediction can require model retraining, which can be time-consuming and expensive. Concept drift occurs in operational networks for a variety of reasons, ranging from software upgrades to seasonality to changes in user behavior. Yet, despite the prevalence of drift in networks, its extent and effects on prediction accuracy have not been extensively studied. This paper presents an initial exploration into concept drift in a large cellular network in the United States for a major metropolitan area in the context of demand forecasting. We find that concept drift arises largely due to data drift, and it appears across different key performance indicators (KPIs), models, training set sizes, and time intervals. We identify the sources of concept drift for the particular problem of forecasting downlink volume. Weekly and seasonal patterns introduce both high and low-frequency model drift, while disasters and upgrades result in sudden drift due to exogenous shocks. Regions with high population density, lower traffic volumes, and higher speeds also tend to correlate with more concept drift. The features that contribute most significantly to concept drift are User Equipment (UE) downlink packets, UE uplink packets, and Real-time Transport Protocol (RTP) total received packets.
The COVID-19 pandemic has resulted in dramatic changes to the daily habits of billions of people. Users increasingly have to rely on home broadband Internet access for work, education, and other activities. These changes have resulted in correspondin g changes to Internet traffic patterns. This paper aims to characterize the effects of these changes with respect to Internet service providers in the United States. We study three questions: (1)How did traffic demands change in the United States as a result of the COVID-19 pandemic?; (2)What effects have these changes had on Internet performance?; (3)How did service providers respond to these changes? We study these questions using data from a diverse collection of sources. Our analysis of interconnection data for two large ISPs in the United States shows a 30-60% increase in peak traffic rates in the first quarter of 2020. In particular, we observe traffic downstream peak volumes for a major ISP increase of 13-20% while upstream peaks increased by more than 30%. Further, we observe significant variation in performance across ISPs in conjunction with the traffic volume shifts, with evident latency increases after stay-at-home orders were issued, followed by a stabilization of traffic after April. Finally, we observe that in response to changes in usage, ISPs have aggressively augmented capacity at interconnects, at more than twice the rate of normal capacity augmentation. Similarly, video conferencing applications have increased their network footprint, more than doubling their advertised IP address space.
Edge Computing exploits computational capabilities deployed at the very edge of the network to support applications with low latency requirements. Such capabilities can reside in small embedded devices that integrate dedicated hardware -- e.g., a GPU -- in a low cost package. But these devices have limited computing capabilities compared to standard server grade equipment. When deploying an Edge Computing based application, understanding whether the available hardware can meet target requirements is key in meeting the expected performance. In this paper, we study the feasibility of deploying Augmented Reality applications using Embedded Edge Devices (EEDs). We compare such deployment approach to one exploiting a standard dedicated server grade machine. Starting from an empirical evaluation of the capabilities of these devices, we propose a simple theoretical model to compare the performance of the two approaches. We then validate such model with NS-3 simulations and study their feasibility. Our results show that there is no one-fits-all solution. If we need to deploy high responsiveness applications, we need a centralized server grade architecture and we can in any case only support very few users. The centralized architecture fails to serve a larger number of users, even when low to mid responsiveness is required. In this case, we need to resort instead to a distributed deployment based on EEDs.
Network management often relies on machine learning to make predictions about performance and security from network traffic. Often, the representation of the traffic is as important as the choice of the model. The features that the model relies on, a nd the representation of those features, ultimately determine model accuracy, as well as where and whether the model can be deployed in practice. Thus, the design and evaluation of these models ultimately requires understanding not only model accuracy but also the systems costs associated with deploying the model in an operational network. Towards this goal, this paper develops a new framework and system that enables a joint evaluation of both the conventional notions of machine learning performance (e.g., model accuracy) and the systems-level costs of different representations of network traffic. We highlight these two dimensions for two practical network management tasks, video streaming quality inference and malware detection, to demonstrate the importance of exploring different representations to find the appropriate operating point. We demonstrate the benefit of exploring a range of representations of network traffic and present Traffic Refinery, a proof-of-concept implementation that both monitors network traffic at 10 Gbps and transforms traffic in real time to produce a variety of feature representations for machine learning. Traffic Refinery both highlights this design space and makes it possible to explore different representations for learning, balancing systems costs related to feature extraction and model training against model accuracy.
Inferring the quality of streaming video applications is important for Internet service providers, but the fact that most video streams are encrypted makes it difficult to do so. We develop models that infer quality metrics (ie, startup delay and res olution) for encrypted streaming video services. Our paper builds on previous work, but extends it in several ways. First, the model works in deployment settings where the video sessions and segments must be identified from a mix of traffic and the time precision of the collected traffic statistics is more coarse (eg, due to aggregation). Second, we develop a single composite model that works for a range of different services (i.e., Netflix, YouTube, Amazon, and Twitch), as opposed to just a single service. Third, unlike many previous models, the model performs predictions at finer granularity (eg, the precise startup delay instead of just detecting short versus long delays) allowing to draw better conclusions on the ongoing streaming quality. Fourth, we demonstrate the model is practical through a 16-month deployment in 66 homes and provide new insights about the relationships between Internet speed and the quality of the corresponding video streams, for a variety of services; we find that higher speeds provide only minimal improvements to startup delay and resolution.
The introduction of Dynamic Adaptive Streaming over HTTP (DASH) helped reduce the consumption of resource in video delivery, but its client-based rate adaptation is unable to optimally use the available end-to-end network bandwidth. We consider the p roblem of optimizing the delivery of video content to mobile clients while meeting the constraints imposed by the available network resources. Observing the bandwidth available in the networks two main components, core network, transferring the video from the servers to edge nodes close to the client, and the edge network, which is in charge of transferring the content to the user, via wireless links, we aim to find an optimal solution by exploiting the predictability of future user requests of sequential video segments, as well as the knowledge of available infrastructural resources at the core and edge wireless networks in a given future time window. Instead of regarding the bottleneck of the end-to-end connection as our throughput, we distribute the traffic load over time and use intermediate nodes between the server and the client for buffering video content to achieve higher throughput, and ultimately significantly improve the Quality of Experience for the end user in comparison with current solutions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا