ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we study the long-term dynamical evolution of multiple-population clusters, focusing on the evolution of the spatial distributions of the first- (FG) and second-generation (SG) stars.In previous studies we have suggested that SG stars f ormed from the ejecta of FG AGB stars are expected initially to be concentrated in the cluster inner regions. Here, by means of N-body simulations, we explore the time scales and the dynamics of the spatial mixing of the FG and the SG populations and their dependence on the SG initial concentration.Our simulations show that, as the evolution proceeds, the radial profile of the SG/FG number ratio, NSG/NFG, is characterized by three regions: 1) a flat inner part; 2) a declining part in which FG stars are increasingly dominant; and 3) an outer region where the NSG/NFG profile flattens again (the NSG/NFG profile may rise slightly again in the outermost cluster regions). The radial variation of NSG/NFG implies that the fraction of SG stars determined by observations covering a limited range of radial distances is not, in general, equal to the SG global fraction, (NSG/NFG)glob. The distance at which NSG/NFG equals (NSG/NFG)glob is approximately between 1 and 2 cluster half-mass radii. The results of our simulations suggest that in many Galactic globular clusters the SG should still be more spatially concentrated than the FG.[abridged]
A large number of spectroscopic studies have provided evidence of the presence of multiple populations in globular clusters by revealing patterns in the stellar chemical abundances. This paper is aimed at studying the origin of these abundance patter ns. We explore a model in which second generation (SG) stars form out of a mix of pristine gas and ejecta of the first generation of asymptotic giant branch stars. We first study the constraints imposed by the spectroscopic data of SG stars in globular clusters on the chemical properties of the asymptotic and super asymptotic giant branch ejecta. With a simple one-zone chemical model, we then explore the formation of the SG population abundance patterns focussing our attention on the Na-O, Al-Mg anticorrelations and on the helium distribution function. We carry out a survey of models and explore the dependence of the final SG chemical properties on the key parameters affecting the gas dynamics and the SG formation process. Finally, we use our chemical evolution framework to build specific models for NGC 2808 and M4, two Galactic globular clusters which show different patterns in the Na-O and Mg-Al anticorrelation and have different helium distributions. We find that the amount of pristine gas involved in the formation of SG stars is a key parameter to fit the observed O-Na and Mg-Al patterns. The helium distribution function for these models is in general good agreement with the observed one. Our models, by shedding light on the role of different parameters and their interplay in determining the final SG chemical properties, illustrate the basic ingredients, constraints and problems encountered in this self-enrichment scenario which must be addressed by more sophisticated chemical and hydrodynamic simulations.
88 - David Yong 2009
Abundances of C, N, and O are determined in four bright red giants that span the known abundance range for light (Na and Al) and s-process (Zr and La) elements in the globular cluster NGC 1851. The abundance sum C+N+O exhibits a range of 0.6 dex, a f actor of 4, in contrast to other clusters in which no significant C+N+O spread is found. Such an abundance range offers support for the Cassisi et al. (2008) scenario in which the double subgiant branch populations are coeval but with different mixtures of C+N+O abundances. Further, the Na, Al, Zr, and La abundances are correlated with C+N+O, and therefore, NGC 1851 is the first cluster to provide strong support for the scenario in which AGB stars are responsible for the globular cluster light element abundance variations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا