ترغب بنشر مسار تعليمي؟ اضغط هنا

370 - Ban Zheng 2013
We introduce a multivariate Hawkes process with constraints on its conditional density. It is a multivariate point process with conditional intensity similar to that of a multivariate Hawkes process but certain events are forbidden with respect to bo undary conditions on a multidimensional constraint variable, whose evolution is driven by the point process. We study this process in the special case where the fertility function is exponential so that the process is entirely described by an underlying Markov chain, which includes the constraint variable. Some conditions on the parameters are established to ensure the ergodicity of the chain. Moreover, scaling limits are derived for the integrated point process. This study is primarily motivated by the stochastic modelling of a limit order book for high frequency financial data analysis.
Let $G$ be a non--linear function of a Gaussian process ${X_t}_{tinmathbb{Z}}$ with long--range dependence. The resulting process ${G(X_t)}_{tinmathbb{Z}}$ is not Gaussian when $G$ is not linear. We consider random wavelet coefficients associated wit h ${G(X_t)}_{tinmathbb{Z}}$ and the corresponding wavelet scalogram which is the average of squares of wavelet coefficients over locations. We obtain the asymptotic behavior of the scalogram as the number of observations and scales tend to infinity. It is known that when $G$ is a Hermite polynomial of any order, then the limit is either the Gaussian or the Rosenblatt distribution, that is, the limit can be represented by a multiple Wiener-It^o integral of order one or two. We show, however, that there are large classes of functions $G$ which yield a higher order Hermite distribution, that is, the limit can be represented by a a multiple Wiener-It^o integral of order greater than two.
We consider stationary processes with long memory which are non-Gaussian and represented as Hermite polynomials of a Gaussian process. We focus on the corresponding wavelet coefficients and study the asymptotic behavior of the sum of their squares si nce this sum is often used for estimating the long-memory parameter. We show that the limit is not Gaussian but can be expressed using the non-Gaussian Rosenblatt process defined as a Wiener It^o integral of order 2. This happens even if the original process is defined through a Hermite polynomial of order higher than 2.
We study the asymptotic behavior of wavelet coefficients of random processes with long memory. These processes may be stationary or not and are obtained as the output of non--linear filter with Gaussian input. The wavelet coefficients that appear in the limit are random, typically non--Gaussian and belong to a Wiener chaos. They can be interpreted as wavelet coefficients of a generalized self-similar process.
We study the asymptotic behavior of empirical processes generated by measurable bounded functions of an infinite source Poisson transmission process when the session length have infinite variance. In spite of the boundedness of the function, the norm alized fluctuations of such an empirical process converge to a non-Gaussian stable process. This phenomenon can be viewed as caused by the long-range dependence in the transmission process. Completing previous results on the empirical mean of similar types of processes, our results on non-linear bounded functions exhibit the influence of the limit transmission rate distribution at high session lengths on the asymptotic behavior of the empirical process. As an illustration, we apply the main result to estimation of the distribution function of the steady state value of the transmission process.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا