ترغب بنشر مسار تعليمي؟ اضغط هنا

The objective of this work is to study continuous-time Markov decision processes on a general Borel state space with both impulsive and continuous controls for the infinite-time horizon discounted cost. The continuous-time controlled process is shown to be non explosive under appropriate hypotheses. The so-called Bellman equation associated to this control problem is studied. Sufficient conditions ensuring the existence and the uniqueness of a bounded measurable solution to this optimality equation are provided. Moreover, it is shown that the value function of the optimization problem under consideration satisfies this optimality equation. Sufficient conditions are also presented to ensure on one hand the existence of an optimal control strategy and on the other hand the existence of an $varepsilon$-optimal control strategy. The decomposition of the state space in two disjoint subsets is exhibited where roughly speaking, one should apply a gradual action or an impulsive action correspondingly to get an optimal or $varepsilon$-optimal strategy. An interesting consequence of our previous results is as follows: the set of strategies that allow interventions at time $t=0$ and only immediately after natural jumps is a sufficient set for the control problem under consideration.
This papers deals with the constrained discounted control of piecewise deterministic Markov process (PDMPs) in general Borel spaces. The control variable acts on the jump rate and transition measure, and the goal is to minimize the total expected dis counted cost, composed of positive running and boundary costs, while satisfying some constraints also in this form. The basic idea is, by using the special features of the PDMPs, to re-write the problem via an embedded discrete-time Markov chain associated to the PDMP and re-formulate the problem as an infinite dimensional linear programming (LP) problem, via the occupation measures associated to the discrete-time process. It is important to stress however that our new discrete-time problem is not in the same framework of a general constrained discrete-time Markov Decision Process and, due to that, some conditions are required to get the equivalence between the continuous-time problem and the LP formulation. We provide in the sequel sufficient conditions for the solvability of the associated LP problem, based on a generalization of Theorem 4.1 in [8]. In the Appendix we present the proof of this generalization which, we believe, is of interest on its own. The paper is concluded with some examples to illustrate the obtained results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا