ترغب بنشر مسار تعليمي؟ اضغط هنا

During the Cassini spacecrafts flyby of Jupiter (October, 2000-March, 2001), the Ultraviolet Imaging Spectrograph (UVIS) produced an extensive dataset consisting of 3,349 spectrally dispersed images of the Io plasma torus. Here we present an example of the raw data and representative EUV spectra (561{AA}-1181{AA}) of the torus, obtained on October 1, 2000 and November 14, 2000. For most of the flyby period, the entire Io torus fit within the UVIS field-of-view, enabling the measurement of the total power radiated from the torus in the extreme ultraviolet. A typical value for the total power radiated in the wavelength range of 580{AA}-1181{AA} is 1.7x10^12 W, with observed variations of up to 25%. Several brightening events were observed. These events lasted for roughly 20 hours, during which time the emitted power increased rapidly by ~20% before slowly returning to the pre-event level. Observed variations in the relative intensities of torus spectral features provide strong evidence for compositional changes in the torus plasma with time. Spatial profiles of the EUV emission show no evidence for a sharply peaked ribbon feature. The ratio of the brightness of the dusk ansa to the brightness of the dawn ansa is observed to be highly variable, with an average value of 1.30. Weak longitudinal variations in the brightness of the torus ansae were observed at the 2% level.
On January 14, 2001, shortly after the Cassini spacecrafts closest approach to Jupiter, the Ultraviolet Imaging Spectrometer (UVIS) made a radial scan through the midnight sector of Io plasma torus. The Io torus has not been previously observed at th is local time. The UVIS data consist of 2-D spectrally dispersed images of the Io plasma torus in the wavelength range of 561{AA}-1912{AA}. We developed a spectral emissions model that incorporates the latest atomic physics data contained in the CHIANTI database in order to derive the composition of the torus plasma as a function of radial distance. Electron temperatures derived from the UVIS torus spectra are generally less than those observed during the Voyager era. We find the torus ion composition derived from the UVIS spectra to be significantly different from the composition during the Voyager era. Notably, the torus contains substantially less oxygen, with a total oxygen-to-sulfur ion ratio of 0.9. The average ion charge state has increased to 1.7. We detect S V in the Io torus at the 3{sigma} level. S V has a mixing ratio of 0.5%. The spectral emission model used in can approximate the effects of a non-thermal distribution of electrons. The ion composition derived using a kappa distribution of electrons is identical to that derived using a Maxwellian electron distribution; however, the kappa distribution model requires a higher electron column density to match the observed brightness of the spectra. The derived value of the kappa parameter decreases with radial distance and is consistent with the value of {kappa}=2.4 at 8 RJ derived by the Ulysses URAP instrument (Meyer-Vernet et al., 1995). The observed radial profile of electron column density is consistent with a flux tube content, NL^2, that is proportional to r^-2.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا