ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrogen fluoride has been established to be an excellent tracer of molecular hydrogen in diffuse clouds. In denser environments, however, the HF abundance has been shown to be approximately two orders of magnitude lower. We present Herschel/HIFI obs ervations of HF J=1-0 toward two high-mass star formation sites, NGC6334 I and AFGL 2591. In NGC6334 I the HF line is seen in absorption in foreground clouds and the source itself, while in AFGL 2591 HF is partially in emission. We find an HF abundance with respect to H2 of 1.5e-8 in the diffuse foreground clouds, whereas in the denser parts of NGC6334 I, we derive a lower limit on the HF abundance of 5e-10. Lower HF abundances in dense clouds are most likely caused by freeze out of HF molecules onto dust grains in high-density gas. In AFGL 2591, the view of the hot core is obstructed by absorption in the massive outflow, in which HF is also very abundant 3.6e-8) due to the desorption by sputtering. These observations provide further evidence that the chemistry of interstellar fluorine is controlled by freeze out onto gas grains.
Photon-dominated regions (PDRs) are expected to show a layered structure in molecular abundances and emerging line emission, which is sensitive to the physical structure of the region as well as the UV radiation illuminating it. We aim to study this layering in the Orion Bar, a prototypical nearby PDR with a favorable edge-on geometry. We present new maps of 2 by 2 arcminute fields at 14-23 arcsecond resolution toward the Orion Bar in the SO 8_8-9_9, H2CO 5_(1,5)-4_(1,4), 13CO 3-2, C2H 4_(9/2)-3_(7/2) and 4_(7/2)-3_(5/2), C18O 2-1 and HCN 3-2 transitions. The data reveal a clear chemical stratification pattern. The C2H emission peaks close to the ionization front, followed by H2CO and SO, while C18O, HCN and 13CO peak deeper into the cloud. A simple PDR model reproduces the observed stratification, although the SO emission is predicted to peak much deeper into the cloud than observed while H2CO is predicted to peak closer to the ionization front than observed. In addition, the predicted SO abundance is higher than observed while the H2CO abundance is lower than observed. The discrepancies between the models and observations indicate that more sophisticated models, including production of H2CO through grain surface chemistry, are needed to quantitatively match the observations of this region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا