ترغب بنشر مسار تعليمي؟ اضغط هنا

We give an asymptotic approximation scheme (APTAS) for the problem of packing a set of circles into a minimum number of unit square bins. To obtain rational solutions, we use augmented bins of height $1+gamma$, for some arbitrarily small number $gamm a > 0$. Our algorithm is polynomial on $log 1/gamma$, and thus $gamma$ is part of the problem input. For the special case that $gamma$ is constant, we give a (one dimensional) resource augmentation scheme, that is, we obtain a packing into bins of unit width and height $1+gamma$ using no more than the number of bins in an optimal packing. Additionally, we obtain an APTAS for the circle strip packing problem, whose goal is to pack a set of circles into a strip of unit width and minimum height. These are the first approximation and resource augmentation schemes for these problems. Our algorithm is based on novel ideas of iteratively separating small and large items, and may be extended to a wide range of packing problems that satisfy certain conditions. These extensions comprise problems with different kinds of items, such as regular polygons, or with bins of different shapes, such as circles and spheres. As an example, we obtain APTASs for the problems of packing d-dimensional spheres into hypercubes under the $L_p$-norm.
A systematic technique to bound factor-revealing linear programs is presented. We show how to derive a family of upper bound factor-revealing programs (UPFRP), and show that each such program can be solved by a computer to bound the approximation fac tor of an associated algorithm. Obtaining an UPFRP is straightforward, and can be used as an alternative to analytical proofs, that are usually very long and tedious. We apply this technique to the Metric Facility Location Problem (MFLP) and to a generalization where the distance function is a squared metric. We call this generalization the Squared Metric Facility Location Problem (SMFLP) and prove that there is no approximation factor better than 2.04, assuming P $ eq$ NP. Then, we analyze the best known algorithms for the MFLP based on primal-dual and LP-rounding techniques when they are applied to the SMFLP. We prove very tight bounds for these algorithms, and show that the LP-rounding algorithm achieves a ratio of 2.04, and therefore has the best factor for the SMFLP. We use UPFRPs in the dual-fitting analysis of the primal-dual algorithms for both the SMFLP and the MFLP, improving some of the previous analysis for the MFLP.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا