ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep learning has an increasing impact to assist research, allowing, for example, the discovery of novel materials. Until now, however, these artificial intelligence techniques have fallen short of discovering the full differential equation of an exp erimental physical system. Here we show that a dynamical neural network, trained on a minimal amount of data, can predict the behavior of spintronic devices with high accuracy and an extremely efficient simulation time, compared to the micromagnetic simulations that are usually employed to model them. For this purpose, we re-frame the formalism of Neural Ordinary Differential Equations (ODEs) to the constraints of spintronics: few measured outputs, multiple inputs and internal parameters. We demonstrate with Spin-Neural ODEs an acceleration factor over 200 compared to micromagnetic simulations for a complex problem -- the simulation of a reservoir computer made of magnetic skyrmions (20 minutes compared to three days). In a second realization, we show that we can predict the noisy response of experimental spintronic nano-oscillators to varying inputs after training Spin-Neural ODEs on five milliseconds of their measured response to different excitations. Spin-Neural ODE is a disruptive tool for developing spintronic applications in complement to micromagnetic simulations, which are time-consuming and cannot fit experiments when noise or imperfections are present. Spin-Neural ODE can also be generalized to other electronic devices involving dynamics.
Arrays of spin-torque nano-oscillators are promising for broadband microwave signal detection and processing, as well as for neuromorphic computing. In many of these applications, the oscillators should be engineered to have equally-spaced frequencie s and equal sensitivity to microwave inputs. Here we design spin-torque nano-oscillator arrays with these rules and estimate their optimum size for a given sensitivity, as well as the frequency range that they cover. For this purpose, we explore analytically and numerically conditions to obtain vortex spin-torque nano-oscillators with equally-spaced gyrotropic oscillation frequencies and having all similar synchronization bandwidths to input microwave signals. We show that arrays of hundreds of oscillators covering ranges of several hundred MHz can be built taking into account nanofabrication constraints.
Spin-related effects in thermoelectricity can be used to design more efficient refrigerators and offer novel promising applications for the harvesting of thermal energy. The key challenge is to design structural and compositional magnetic material sy stems with sufficiently high efficiency and power output for transforming thermal energy into electric energy and vice versa. Here, the fabrication of large-area 3D interconnected Co/Cu nanowire networks is demonstrated, thereby enabling the controlled Peltier cooling of macroscopic electronic components with an external magnetic field. The flexible, macroscopic devices overcome inherent limitations of nanoscale magnetic structures due to insufficient power generation capability that limits the heat management applications. From properly designed experiments, large spin-dependent Seebeck and Peltier coefficients of $-9.4$ $mu$V/K and $-2.8$ mV at room temperature, respectively. The resulting power factor of Co/Cu nanowire networks at room temperature ($sim7.5$ mW/K$^2$m) is larger than those of state of the art thermoelectric materials, such as BiTe alloys and the magneto-power factor ratio reaches about 100% over a wide temperature range. Validation of magnetic control of heat flow achieved by taking advantage of the spin-dependent thermoelectric properties of flexible macroscopic nanowire networks lay the groundwork to design shapeable thermoelectric coolers exploiting the spin degree of freedom.
The reservoir computing neural network architecture is widely used to test hardware systems for neuromorphic computing. One of the preferred tasks for bench-marking such devices is automatic speech recognition. However, this task requires acoustic tr ansformations from sound waveforms with varying amplitudes to frequency domain maps that can be seen as feature extraction techniques. Depending on the conversion method, these may obscure the contribution of the neuromorphic hardware to the overall speech recognition performance. Here, we quantify and separate the contributions of the acoustic transformations and the neuromorphic hardware to the speech recognition success rate. We show that the non-linearity in the acoustic transformation plays a critical role in feature extraction. We compute the gain in word success rate provided by a reservoir computing device compared to the acoustic transformation only, and show that it is an appropriate benchmark for comparing different hardware. Finally, we experimentally and numerically quantify the impact of the different acoustic transformations for neuromorphic hardware based on magnetic nano-oscillators.
In this paper, we propose to control the strength of phase-locking between two dipolarly coupled vortex based spin-torque nano-oscillators by placing an intermediate oscillator between them. We show through micromagnetic simulations that the strength of phase-locking can be largely tuned by a slight variation of current in the intermediate oscillator. We develop simplified numerical simulations based on analytical expressions of the vortex core trajectories that will be useful for investigating large arrays of densely packed spin-torque oscillators interacting through their stray fields.
Neurons in the brain behave as non-linear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behavior to realize high density, low power neuromorphic computing will require huge numbers of n anoscale non-linear oscillators. Indeed, a simple estimation indicates that, in order to fit a hundred million oscillators organized in a two-dimensional array inside a chip the size of a thumb, their lateral dimensions must be smaller than one micrometer. However, despite multiple theoretical proposals, there is no proof of concept today of neuromorphic computing with nano-oscillators. Indeed, nanoscale devices tend to be noisy and to lack the stability required to process data in a reliable way. Here, we show experimentally that a nanoscale spintronic oscillator can achieve spoken digit recognition with accuracies similar to state of the art neural networks. We pinpoint the regime of magnetization dynamics leading to highest performance. These results, combined with the exceptional ability of these spintronic oscillators to interact together, their long lifetime, and low energy consumption, open the path to fast, parallel, on-chip computation based on networks of oscillators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا