ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum walks are powerful tools for quantum applications and for designing topological systems. Although they are simulated in a variety of platforms, genuine two-dimensional realizations are still challenging. Here we present an innovative approach to the photonic simulation of a quantum walk in two dimensions, where walker positions are encoded in the transverse wavevector components of a single light beam. The desired dynamics is obtained by means of a sequence of liquid-crystal devices, which apply polarization-dependent transverse kicks to the photons in the beam. We engineer our quantum walk so that it realizes a periodically-driven Chern insulator, and we probe its topological features by detecting the anomalous displacement of the photonic wavepacket under the effect of a constant force. Our compact, versatile platform offers exciting prospects for the photonic simulation of two-dimensional quantum dynamics and topological systems.
We study chiral models in one spatial dimension, both static and periodically driven. We demonstrate that their topological properties may be read out through the long time limit of a bulk observable, the mean chiral displacement. The derivation of t his result is done in terms of spectral projectors, allowing for a detailed understanding of the physics. We show that the proposed detection converges rapidly and it can be implemented in a wide class of chiral systems. Furthermore, it can measure arbitrary winding numbers and topological boundaries, it applies to all non-interacting systems, independently of their quantum statistics, and it requires no additional elements, such as external fields, nor filled bands.
Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walks are proving to be effective simulators of such phenomena. Here we report the realization of a photonic q uantum walk showing both the trivial and the non-trivial topologies associated with chiral symmetry in one-dimensional periodic systems, as in the Su-Schrieffer-Heeger model of polyacetylene. We find that the probability distribution moments of the walker position after many steps behave differently in the two topological phases and can be used as direct indicators of the quantum transition: while varying a control parameter, these moments exhibit a slope discontinuity at the transition point, and remain constant in the non-trivial phase. Extending this approach to higher dimensions, different topological classes, and other typologies of quantum phases may offer new general instruments for investigating quantum transitions in such complex systems.
The quantum walk has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on mult i-path interferometric schemes in real space. Here, we report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations.
We test experimentally the quantum ``paradox proposed by Lucien Hardy in 1993 [Phys. Rev. Lett. 71, 1665 (1993)] by using single photons instead of photon pairs. This is achieved by addressing two compatible degrees of freedom of the same particle, n amely its spin angular momentum, determined by the photon polarization, and its orbital angular momentum, a property related to the optical transverse mode. Because our experiment involves a single particle, we cannot use locality to logically enforce non-contextuality, which must therefore be assumed based only on the observables compatibility. On the other hand, our single-particle experiment can be implemented more simply and allows larger detection efficiencies than typical two-particle ones, with a potential future advantage in terms of closing the detection loopholes.
Inspired by the classical phenomenon of random walk, the concept of quantum walk has emerged recently as a powerful platform for the dynamical simulation of complex quantum systems, entanglement production and universal quantum computation. Such a wi de perspective motivates a renewing search for efficient, scalable and stable implementations of this quantum process. Photonic approaches have hitherto mainly focused on multi-path schemes, requiring interferometric stability and a number of optical elements that scales quadratically with the number of steps. Here we report the experimental realization of a quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous indistinguishable photons. The whole process develops in a single light beam, with no need of interferometers, and requires optical resources scaling linearly with the number of steps. Our demonstration introduces a novel versatile photonic platform for implementing quantum simulations, based on exploiting the transverse modes of a single light beam as quantum degrees of freedom.
In quantum information, complementarity of quantum mechanical observables plays a key role. If a system resides in an eigenstate of an observable, the probability distribution for the values of a complementary observable is flat. The eigenstates of t hese two observables form a pair of mutually unbiased bases (MUBs). More generally, a set of MUBs consists of bases that are all pairwise unbiased. Except for specific dimensions of the Hilbert space, the maximal sets of MUBs are unknown in general. Even for a dimension as low as six, the identification of a maximal set of MUBs remains an open problem, although there is strong numerical evidence that no more than three simultaneous MUBs do exist. Here, by exploiting a newly developed holographic technique, we implement and test different sets of three MUBs for a single photon six-dimensional quantum state (a qusix), encoded either in a hybrid polarization-orbital angular momentum or a pure orbital angular momentum Hilbert space. A close agreement is observed between theory and experiments. Our results can find applications in state tomography, quantitative wave-particle duality, quantum key distribution and tests on complementarity and logical indeterminacy.
We describe the polarization topology of the vector beams emerging from a patterned birefringent liquid crystal plate with a topological charge $q$ at its center ($q$-plate). The polarization topological structures for different $q$-plates and differ ent input polarization states have been studied experimentally by measuring the Stokes parameters point-by-point in the beam transverse plane. Furthermore, we used a tuned $q=1/2$-plate to generate cylindrical vector beams with radial or azimuthal polarizations, with the possibility of switching dynamically between these two cases by simply changing the linear polarization of the input beam.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا