ترغب بنشر مسار تعليمي؟ اضغط هنا

We present ANNz2, a new implementation of the public software for photometric redshift (photo-z) estimation of Collister and Lahav (2004), which now includes generation of full probability distribution functions (PDFs). ANNz2 utilizes multiple machin e learning methods, such as artificial neural networks and boosted decision/regression trees. The objective of the algorithm is to optimize the performance of the photo-z estimation, to properly derive the associated uncertainties, and to produce both single-value solutions and PDFs. In addition, estimators are made available, which mitigate possible problems of non-representative or incomplete spectroscopic training samples. ANNz2 has already been used as part of the first weak lensing analysis of the Dark Energy Survey, and is included in the experiments first public data release. Here we illustrate the functionality of the code using data from the tenth data release of the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. The code is available for download at https://github.com/IftachSadeh/ANNZ .
We present a proof-of-concept of a novel and fully Bayesian methodology designed to detect halos of different masses in cosmological observations subject to noise and systematic uncertainties. Our methodology combines the previously published Bayesia n large-scale structure inference algorithm, HADES, and a Bayesian chain rule (the Blackwell-Rao Estimator), which we use to connect the inferred density field to the properties of dark matter halos. To demonstrate the capability of our approach we construct a realistic galaxy mock catalogue emulating the wide-area 6-degree Field Galaxy Survey, which has a median redshift of approximately 0.05. Application of HADES to the catalogue provides us with accurately inferred three-dimensional density fields and corresponding quantification of uncertainties inherent to any cosmological observation. We then use a cosmological simulation to relate the amplitude of the density field to the probability of detecting a halo with mass above a specified threshold. With this information we can sum over the HADES density field realisations to construct maps of detection probabilities and demonstrate the validity of this approach within our mock scenario. We find that the probability of successful of detection of halos in the mock catalogue increases as a function of the signal-to-noise of the local galaxy observations. Our proposed methodology can easily be extended to account for more complex scientific questions and is a promising novel tool to analyse the cosmic large-scale structure in observations.
We provide an overview of the science benefits of combining information from the Square Kilometre Array (SKA) and the Large Synoptic Survey Telescope (LSST). We first summarise the capabilities and timeline of the LSST and overview its science goals. We then discuss the science questions in common between the two projects, and how they can be best addressed by combining the data from both telescopes. We describe how weak gravitational lensing and galaxy clustering studies with LSST and SKA can provide improved constraints on the causes of the cosmological acceleration. We summarise the benefits to galaxy evolution studies of combining deep optical multi-band imaging with radio observations. Finally, we discuss the excellent match between one of the most unique features of the LSST, its temporal cadence in the optical waveband, and the time resolution of the SKA.
21cm intensity mapping experiments aim to observe the diffuse neutral hydrogen (HI) distribution on large scales which traces the Cosmic structure. The Square Kilometre Array (SKA) will have the capacity to measure the 21cm signal over a large fracti on of the sky. However, the redshifted 21cm signal in the respective frequencies is faint compared to the Galactic foregrounds produced by synchrotron and free-free electron emission. In this article, we review selected foreground subtraction methods suggested to effectively separate the 21cm signal from the foregrounds with intensity mapping simulations or data. We simulate an intensity mapping experiment feasible with SKA phase 1 including extragalactic and Galactic foregrounds. We give an example of the residuals of the foreground subtraction with a independent component analysis and show that the angular power spectrum is recovered within the statistical errors on most scales. Additionally, the scale of the Baryon Acoustic Oscillations is shown to be unaffected by foreground subtraction.
107 - Prina Patel 2013
We present a study of weak lensing shear measurements for simulated galaxy images at radio wavelengths. We construct a simulation pipeline into which we can input galaxy images of known ellipticity, and with which we then simulate observations with e MERLIN and the international LOFAR array. The simulations include the effects of the CLEAN algorithm, uv sampling, observing angle, and visibility noise, and produce realistic restored images of the galaxies. We apply a shapelet-based shear measurement method to these images and test our ability to recover the true source ellipticities. We model and deconvolve the effective PSF, and find suitable parameters for CLEAN and shapelet decomposition of galaxies. We demonstrate that ellipticities can be measured faithfully in these radio simulations, with no evidence of an additive bias and a modest (10%) multiplicative bias on the ellipticity measurements. Our simulation pipeline can be used to test shear measurement procedures and systematics for the next generation of radio telescopes.
We study the impact of the spread spectrum effect in radio interferometry on the quality of image reconstruction. This spread spectrum effect will be induced by the wide field-of-view of forthcoming radio interferometric telescopes. The resulting chi rp modulation improves the quality of reconstructed interferometric images by increasing the incoherence of the measurement and sparsity dictionaries. We extend previous studies of this effect to consider the more realistic setting where the chirp modulation varies for each visibility measurement made by the telescope. In these first preliminary results, we show that for this setting the quality of reconstruction improves significantly over the case without chirp modulation and achieves almost the reconstruction quality of the case of maximal, constant chirp modulation.
104 - Ofer Lahav 2009
We study the prospects for detecting neutrino masses from the galaxy angular power spectrum in photometric redshift shells of the Dark Energy Survey (DES) over a volume of 20 (Gpc/h)^3 combined with the Cosmic Microwave Background (CMB) angular fluct uations expected to be measured from the Planck satellite. We find that for a Lambda-CDM concordance model with 7 free parameters in addition to a fiducial neutrino mass of M_nu = 0.24 eV, we recover from DES &Planck the correct value with uncertainty of +- 0.12 eV (95 % CL), assuming perfect knowledge of the galaxy biasing. If the fiducial total mass is close to zero, then the upper limit is 0.11 eV (95 % CL). This upper limit from DES &Planck is over 3 times tighter than using Planck alone, as DES breaks the parameter degeneracies in a CMB-only analysis. The analysis utlilizes spherical harmonics up to 300, averaged in bin of 10 to mimic the DES sky coverage. The results are similar if we supplement DES bands (grizY) with the VISTA Hemisphere Survey (VHS) near infrared band (JHK). The result is robust to uncertainties in non-linear fluctuations and redshift distortions. However, the result is sensitive to the assumed galaxy biasing schemes and it requires accurate prior knowledge of the biasing. To summarize, if the total neutrino mass in nature greater than 0.1eV, we should be able to detect it with DES &Planck, a result with great importance to fundamental Physics.
In recent years a plethora of future surveys have been suggested to constrain the nature of dark energy. In this paper we adapt a binning approach to the equation of state factor ``w and discuss how future weak lensing, galaxy cluster counts, Superno vae and baryon acoustic oscillation surveys constrain the equation of state at different redshifts. We analyse a few representative future surveys, namely DES, PS1, WFMOS, PS4, EUCLID, SNAP and SKA, and perform a principal component analysis for the ``w bins. We also employ a prior from Planck cosmic microwave background measurements on the remaining cosmological parameters. We study at which redshifts a particular survey constrains the equation of state best and how many principal components are significantly determined. We then point out which surveys would be sufficiently complementary. We find that weak lensing surveys, like EUCLID, would constrain the equation of state best and would be able to constrain of the order of three significant modes. Baryon acoustic oscillation surveys on the other hand provide a unique opportunity to probe the equation of state at relatively high redshifts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا