ترغب بنشر مسار تعليمي؟ اضغط هنا

We study vortex solutions in Abelian Chern-Simons-Higgs theories with visible and hidden sectors. We first consider the case in which the two sectors are connected through a BF-like gauge mixing term with no explicit interaction between the the two s calars. Since first order Bogomolny equations do not exist in this case, we derive the second order field equations. We then proceed to an ${cal N}=2$ supersymmetric extension including a Higgs portal mixing among the visible and hidden charged scalars. As expected, Bogomolnyi equations do exist in this case and we study their string-like solutions numerically.
Non-Abelian flux-tube (string) solutions carrying global currents are found in the bosonic sector of 4-dimensional N=2 super-symmetric gauge theories. The specific model considered here posseses U(2)local x SU(2)global symmetry, with two scalar doubl ets in the fundamental representation of SU(2). We construct string solutions that are stationary and translationally symmetric along the x3 direction, and they are characterized by a matrix phase between the two doublets, referred to as twist. Consequently, twisted strings have nonzero (global) charge, momentum, and in some cases even angular momentum per unit length. The planar cross section of a twisted string corresponds to a rotationally symmetric, charged non-Abelian vortex, satisfying 1st order Bogomolny-type equations and 2nd order Gauss-constraints. Interestingly, depending on the nature of the matrix phase, some of these solutions even break rotational symmetry in R3. Although twisted vortices have higher energy than the untwisted ones, they are expected to be linearly stable since one can maintain their charge (or twist) fixed with respect to small perturbations.
We study vortex solutions in a theory with dynamics governed by two weakly coupled Abelian Higgs models, describing a hidden sector and a visible sector. We analyze the radial dependence of the axially symmetric solutions constructed numerically and discuss the stability of vortex configurations for different values of the model parameters, studying in detail vortex decay into lower energy configurations. We find that even in a weak coupling regime vortex solutions strongly depend on the parameters of both the visible and hidden sectors. We also discuss on qualitative grounds possible implications of the existence of a hidden sector in connection with superconductivity.
We establish a duality between massive fermions coupled to topologically massive gravity (TGM) in $d=3$ space-time dimensions and a purely gravity theory which also will turn out to be a TGM theory but with different parameters: the original graviton mass in the TGM theory coupled to fermions picks-up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy-momentum-tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for $2+1$ Abelian and non-Abelian bosonization in flat space-time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا