ترغب بنشر مسار تعليمي؟ اضغط هنا

Main-Belt Comet P/2012 T1 (PANSTARRS) has been imaged using the 10.4m Gran Telescopio Canarias (GTC) and the 4.2m William Herschel Telescope (WHT) at six epochs in the period from November 2012 to February 2013, with the aim of monitoring its dust en vironment. The dust tails brightness and morphology are best interpreted in terms of a model of sustained dust emission spanning 4 to 6 months. The total dust mass ejected is estimated at $sim$6--25$times10^6$ kg. We assume a time-independent power-law size distribution function, with particles in the micrometer to centimeter size range. Based on the quality of the fits to the isophote fields, an anisotropic emission pattern is favored against an isotropic one, in which the particle ejection is concentrated toward high latitudes ($pm45^circ$ to $pm90^circ$) in a high obliquity object ($I$=80$^circ$). This seasonally-driven ejection behavior, along with the modeled particle ejection velocities, are in remarkable agreement to those we found for P/2010 R2 (La Sagra) citep{Moreno11a}.
A three-dimensional numerical experiment of the launching of a hot and fast coronal jet followed by several violent eruptions is analyzed in detail. These events are initiated through the emergence of a magnetic flux rope from the solar interior into a coronal hole. We explore the evolution of the emerging magnetically-dominated plasma dome surmounted by a current sheet and the ensuing pattern of reconnection. A hot and fast coronal jet with inverted-Y shape is produced that shows properties comparable to those frequently observed with EUV and X-Ray detectors. We analyze its 3D shape, its inhomogeneous internal structure, and its rise and decay phases, lasting for some 15-20 min each. Particular attention is devoted to the field-line connectivities and the reconnection pattern. We also study the cool and high-density volume that appears encircling the emerged dome. The decay of the jet is followed by a violent phase with a total of five eruptions. The first of them seems to follow the general pattern of tether-cutting reconnection in a sheared arcade, although modified by the field topology created by the preceding reconnection evolution. The two following eruptions take place near and above the strong field-concentrations at the surface. They show a twisted, Omega-loop like rope expanding in height, with twist being turned into writhe, thus hinting at a kink instability (perhaps combined with a torus-instability) as the cause of the eruption. The succession of a main jet ejection and a number of violent eruptions that resemble mini-CMEs and their physical properties suggest that this experiment may provide a model for the blowout jets recently proposed in the literature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا