ترغب بنشر مسار تعليمي؟ اضغط هنا

Network representations often cannot fully account for the structural richness of complex systems spanning multiple levels of organisation. Recently proposed high-order information-theoretic signals are well-suited to capture synergistic phenomena th at transcend pairwise interactions; however, the exponential-growth of their cardinality severely hinders their applicability. In this work, we combine methods from harmonic analysis and combinatorial topology to construct efficient representations of high-order information-theoretic signals. The core of our method is the diagonalisation of a discrete version of the Laplace-de Rham operator, that geometrically encodes structural properties of the system. We capitalise on these ideas by developing a complete workflow for the construction of hyperharmonic representations of high-order signals, which is applicable to a wide range of scenarios.
The broad concept of emergence is instrumental in various of the most challenging open scientific questions -- yet, few quantitative theories of what constitutes emergent phenomena have been proposed. This article introduces a formal theory of causal emergence in multivariate systems, which studies the relationship between the dynamics of parts of a system and macroscopic features of interest. Our theory provides a quantitative definition of downward causation, and introduces a complementary modality of emergent behaviour -- which we refer to as causal decoupling. Moreover, the theory allows practical criteria that can be efficiently calculated in large systems, making our framework applicable in a range of scenarios of practical interest. We illustrate our findings in a number of case studies, including Conways Game of Life, Reynolds flocking model, and neural activity as measured by electrocorticography.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا