ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent NMR experiments by Singer et al. [Singer et al. Phys. Rev. Lett. 95, 236403 (2005).] showed a deviation from Fermi-liquid behavior in carbon nanotubes with an energy gap evident at low temperatures. Here, a comprehensive theory for the magneti c field and temperature dependent NMR 13C spin-lattice relaxation is given in the framework of the Tomonaga-Luttinger liquid. The low temperature properties are governed by a gapped relaxation due to a spin gap (~ 30K), which crosses over smoothly to the Luttinger liquid behaviour with increasing temperature.
Recently, Arcon et al. reported ESR studies of the polymer phase (PP) of Na_{2}Rb_{0.3}Cs_{0.7}C_{60} fulleride. It was claimed that this phase is a quasi-one-dimensional metal above 45 K with a spin-gap below this temperature and has antiferromagnet ic(AF) order below 15 K, that is evidenced by antiferromagnetic resonance(AFMR). For the understanding of the rich physics of fullerides it is important to identify the different ground states. ESR has proven to be a useful technique for this purpose. However, since it is a very sensitive probe, it can detect a multitude of spin species and it is not straightforward to identify their origin, especially in a system like Na_{2}Rb_{x}Cs_{1-x}C_{60} with three dopants, when one part of the sample polymerizes but the majority does not. The observation of a low dimensional instability in the single bonded PP would be a novel and important result. Nevertheless, in this Comment we argue that Na_{2}Rb_{0.3}Cs_{0.7}C_{60} is not a good choice for this purpose since, as we show, the samples used by Arcon et al. are inhomogeneous. We point out that recent results on the PP of Na_{2}CsC_{60} contradicts the observation of low dimensional instabilities in Na_{2}Rb_{0.3}Cs_{0.7}C_{60}.
159 - Andras Janossy , Ferenc Simon , 2000
In a recent Letter Ando et al (cond-mat/9905071) discovered an anomalous magnetoresistance(MR) in hole doped antiferromagnetic YBa$_2$Cu$_3$O$_{6+x}$, which they attributed to charged stripes, i.e., to segregation of holes into lines. In this Comment we show that the experiments, albeit being interesting, do not prove the existence of stripes. In our view the anomalous behavior is due to an (a,b) plane anisotropy of the resistivity in the bulk and to a magnetic field dependent antiferromagnetic (AF) domain structure. It is unlikely that domain walls are charged stripes.
Electron Spin Resonance and optical reflectivity measurements demonstrate a metal-insulator transition in Na_2CsC_60 as the system passes from the low temperature simple cubic to the high temperature {it fcc} structure above 300 K. The non-conducting electronic state is especially unexpected in view of the metallic character of other, apparently isostructural fullerides, like K_3C_60. The occurence of this phase in Na_2CsC_60 suggests that alkali specific effects can not be neglected in the description of the electronic properties of alkali doped fullerides. We discuss the origin of the insulating state and the relevance of our results for the anomaly observed in the magnitude of the superconducting transition temperature of Na_2AC_60 fullerides.
We report on the magnetic resonance of NH_3K_3C_60 powders in the frequency range of 9 to 225 GHz. The observation of an antiferromagnetic resonance below the phase transition at 40 K is evidence for an antiferromagnetically ordered ground state. In the normal state, above 40 K, the temperature dependence of the spin-susceptibilty measured by ESR agrees with previous static measurements and is too weak to be explained by interacting localized spins in an insulator. The magnetic resonance line width has an unusual magnetic-field dependence which is large and temperature independent in the magnetically ordered state and decreases rapidly above the transition. These observations agree with the suggestion that NH_3K_3C_60 is a metal in the normal state and undergoes a Mott-Hubbard metal to insulator transition at 40 K.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا