ترغب بنشر مسار تعليمي؟ اضغط هنا

164 - Sen Yang , Feng Luo , Jun Zhang 2021
Mitotic count is the most important morphological feature of breast cancer grading. Many deep learning-based methods have been proposed but suffer from domain shift. In this work, we construct a Fourier-based segmentation model for mitosis detection to address the problem. Swapping the low-frequency spectrum of source and target images is shown effective to alleviate the discrepancy between different scanners. Our Fourier-based segmentation method can achieve F1 with 0.7456 on the preliminary test set.
Binary stars plays important role in the evolution of stellar populations . The intrinsic binary fraction ($f_{bin}$) of O and B-type (OB) stars in LAMOST DR5 was investigated in this work. We employed a cross-correlation approach to estimate relativ e radial velocities for each of the stellar spectra. The algorithm described by cite{2013A&A...550A.107S} was implemented and several simulations were made to assess the performance of the approach. Binary fraction of the OB stars are estimated through comparing the uni-distribution between observations and simulations with the Kolmogorov-Smirnov tests. Simulations show that it is reliable for stars most of whom have $6,7$ and $8$ repeated observations. The uncertainty of orbital parameters of binarity become larger when observational frequencies decrease. By adopting the fixed power exponents of $pi=-0.45$ and $kappa=-1$ for period and mass ratio distributions, respectively, we obtain that $f_{bin}=0.4_{-0.06}^{+0.05}$ for the samples with more than 3 observations. When we consider the full samples with at least 2 observations, the binary fraction turns out to be $0.37_{-0.03}^{+0.03}$. These two results are consistent with each other in $1sigma$.
Systems with different interactions could develop the same critical behaviour due to the underlying symmetry and universality. Using this principle of universality, we can embed critical correlations modeled on the 3D Ising model into the simulated d ata of heavy-ion collisions, hiding weak signals of a few inter-particle correlations within a large particle cloud. Employing a point cloud network with dynamical edge convolution, we are able to identify events with critical fluctuations through supervised learning, and pick out a large fraction of signal particles used for decision-making in each single event.
Boundary-based instance segmentation has drawn much attention since of its attractive efficiency. However, existing methods suffer from the difficulty in long-distance regression. In this paper, we propose a coarse-to-fine module to address the probl em. Approximate boundary points are generated at the coarse stage and then features of these points are sampled and fed to a refined regressor for fine prediction. It is end-to-end trainable since differential sampling operation is well supported in the module. Furthermore, we design a holistic boundary-aware branch and introduce instance-agnostic supervision to assist regression. Equipped with ResNet-101, our approach achieves 31.7% mask AP on COCO dataset with single-scale training and testing, outperforming the baseline 1.3% mask AP with less than 1% additional parameters and GFLOPs. Experiments also show that our proposed method achieves competitive performance compared to existing boundary-based methods with a lightweight design and a simple pipeline.
Joint event and causality extraction is a challenging yet essential task in information retrieval and data mining. Recently, pre-trained language models (e.g., BERT) yield state-of-the-art results and dominate in a variety of NLP tasks. However, thes e models are incapable of imposing external knowledge in domain-specific extraction. Considering the prior knowledge of frequent n-grams that represent cause/effect events may benefit both event and causality extraction, in this paper, we propose convolutional knowledge infusion for frequent n-grams with different windows of length within a joint extraction framework. Knowledge infusion during convolutional filter initialization not only helps the model capture both intra-event (i.e., features in an event cluster) and inter-event (i.e., associations across event clusters) features but also boosts training convergence. Experimental results on the benchmark datasets show that our model significantly outperforms the strong BERT+CSNN baseline.
Fluctuations of conserved charges are sensitive to the QCD phase transition and a possible critical endpoint in the phase diagram at finite density. In this work, we compute the baryon number fluctuations up to tenth order at finite temperature and d ensity. This is done in a QCD-assisted effective theory that accurately captures the quantum- and in-medium effects of QCD at low energies. A direct computation at finite density allows us to assess the applicability of expansions around vanishing density. By using different freeze-out scenarios in heavy-ion collisions, we translate these results into baryon number fluctuations as a function of collision energy. We show that a non-monotonic energy dependence of baryon number fluctuations can arise in the non-critical crossover region of the phase diagram. Our results compare well with recent experimental measurements of the kurtosis and the sixth-order cumulant of the net-proton distribution from the STAR collaboration. They indicate that the experimentally observed non-monotonic energy dependence of fourth-order net-proton fluctuations is highly non-trivial. It could be an experimental signature of an increasingly sharp chiral crossover and may indicate a QCD critical point. The physics implications and necessary upgrades of our analysis are discussed in detail.
Data sharing is essential in the numerical simulations research. We introduce a data repository, DataVault, that is designed for data sharing, search and analysis. A comparative study of existing repositories is performed to analyze features that are critical to a data repository. We describe the architecture, workflow, and deployment of DataVault, and provide three use-case scenarios for different communities to facilitate the use and application of DataVault. Potential features are proposed and we outline the future development for these features.
186 - Yanyang Li , Yingfeng Luo , Ye Lin 2020
Unsupervised Bilingual Dictionary Induction methods based on the initialization and the self-learning have achieved great success in similar language pairs, e.g., English-Spanish. But they still fail and have an accuracy of 0% in many distant languag e pairs, e.g., English-Japanese. In this work, we show that this failure results from the gap between the actual initialization performance and the minimum initialization performance for the self-learning to succeed. We propose Iterative Dimension Reduction to bridge this gap. Our experiments show that this simple method does not hamper the performance of similar language pairs and achieves an accuracy of 13.64~55.53% between English and four distant languages, i.e., Chinese, Japanese, Vietnamese and Thai.
Graph-structured data exist in numerous applications in real life. As a state-of-the-art graph neural network, the graph convolutional network (GCN) plays an important role in processing graph-structured data. However, a recent study reported that GC Ns are also vulnerable to adversarial attacks, which means that GCN models may suffer malicious attacks with unnoticeable modifications of the data. Among all the adversarial attacks on GCNs, there is a special kind of attack method called the universal adversarial attack, which generates a perturbation that can be applied to any sample and causes GCN models to output incorrect results. Although universal adversarial attacks in computer vision have been extensively researched, there are few research works on universal adversarial attacks on graph structured data. In this paper, we propose a targeted universal adversarial attack against GCNs. Our method employs a few nodes as the attack nodes. The attack capability of the attack nodes is enhanced through a small number of fake nodes connected to them. During an attack, any victim node will be misclassified by the GCN as the attack node class as long as it is linked to them. The experiments on three popular datasets show that the average attack success rate of the proposed attack on any victim node in the graph reaches 83% when using only 3 attack nodes and 6 fake nodes. We hope that our work will make the community aware of the threat of this type of attack and raise the attention given to its future defense.
156 - Feng Luo , Jian Sun , Tianqi Wu 2020
The paper proves a result on the convergence of discrete conformal maps to the Riemann mappings for Jordan domains. It is a counterpart of Rodin-Sullivans theorem on convergence of circle packing mappings to the Riemann mapping in the new setting of discrete conformality. The proof follows the same strategy that Rodin-Sullivan used by establishing a rigidity result for regular hexagonal triangulations of the plane and estimating the quasiconformal constants associated to the discrete conformal maps.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا