ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-surface nitrogen-vacancy ({NV}) centers in diamond have been successfully employed as atomic-sized magnetic field sensors for external spins over the last years. A key challenge is still to develop a method to bring NV centers at nanometer proxi mity to the diamond surface while preserving their optical and spin properties. To that aim we present a method of controlled diamond etching with nanometric precision using an oxygen inductively coupled plasma (ICP) process. Importantly, no traces of plasma-induced damages to the etched surface could be detected by X-ray photoelectron spectroscopy (XPS) and confocal photoluminescence microscopy techniques. In addition, by profiling the depth of NV centers created by 5.0 keV of nitrogen implantation energy, no plasma-induced quenching in their fluorescence could be observed. Moreover, the developed etching process allowed even the channeling tail in their depth distribution to be resolved. Furthermore, treating a 12C isotopically purified diamond revealed a threefold increase in T2 times for NV centers with <4 nm of depth (measured by NMR signal from protons at the diamond surface) in comparison to the initial oxygen-terminated surface.
Photonic structures in diamond are key to most of its application in quantum technology. Here, we demonstrate tapered nano-waveguides structured directly onto the diamond substrate hosting shallow-implanted nitrogen vacancy (NV) centers. By optimizat ion based on simulations and precise experimental control of the geometry of these pillar-shaped nano-waveguides, we achieve a net photon flux up to ~ $1.7 cdot 10^6 /s$. This presents the brightest monolithic bulk diamond structure based on single NV centers so far. We observe no impact on excited state lifetime and electronic spin dephasing time ($T_2$) due to the nanofabrication process. Possessing such high brightness with low background in addition to preserved spin quality, this geometry can improve the current nanomagnetometry sensitivity ~ 5 times. In addition, it facilitates a wide range of diamond defects-based magnetometry applications. As a demonstration, we measure the temperature dependency of $T_1$ relaxation time of a single shallow NV center electronic spin. We observe the two-phonon Raman process to be negligible in comparison to the dominant two-phonon Orbach process.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا