ترغب بنشر مسار تعليمي؟ اضغط هنا

We present B,V time-series photometry of Andromeda XIX (And XIX), the most extended (half-light radius of 6.2) of Andromedas dwarf spheroidal companions, that we observed with the Large Binocular Cameras at the Large Binocular Telescope. We surveyed a 23x 23 area centered on And XIX and present the deepest color magnitude diagram (CMD) ever obtained for this galaxy, reaching, at V~26.3 mag, about one magnitude below the horizontal branch (HB). The CMD shows a prominent and slightly widened red giant branch, along with a predominantly red HB, which, however, extends to the blue to significantly populate the classical instability strip. We have identified 39 pulsating variable stars, of which 31 are of RR Lyrae type and 8 are Anomalous Cepheids (ACs). Twelve of the RR Lyrae variables and 3 of the ACs are located within And XIXs half light radius. The average period of the fundamental mode RR Lyrae stars (<Pab> = 0.62 d, sigma= 0.03 d) and the period-amplitude diagram qualify And XIX as an Oosterhoff-Intermediate system. From the average luminosity of the RR Lyrae stars (<V (RR)> = 25.34 mag, sigma= 0.10 mag) we determine a distance modulus of (m-M)$_0$=$24.52pm0.23$ mag in a scale where the distance to the Large Magellanic Cloud (LMC) is $18.5pm0.1$ mag. The ACs follow a well defined Period-Wesenheit (PW) relation that appears to be in very good agreement with the PW relationship defined by the ACs in the LMC.
Using Georgia State Universitys CHARA Array interferometer, we measured angular diameters for 25 giant stars, six of which host exoplanets. The combination of these measurements and Hipparcos parallaxes produce physical linear radii for the sample. E xcept for two outliers, our values match angular diameters and physical radii estimated using photometric methods to within the associated errors with the advantage that our uncertainties are significantly lower. We also calculated the effective temperatures for the stars using the newly-measured diameters. Our values do not match those derived from spectroscopic observations as well, perhaps due to the inherent properties of the methods used or because of a missing source of extinction in the stellar models that would affect the spectroscopic temperatures.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا