ترغب بنشر مسار تعليمي؟ اضغط هنا

Several recent investigations have shown that there is a holographic relationship between the bulk degrees of freedom and the surface degrees of freedom in the spacetime. Furthermore, the entropy on the horizon can produce an entropic force effect on the bulk degrees of freedom. In this paper, we explore the dynamic evolution law of the universe based on the idea of the entropic force and asymptotically holographic equipartition and further analyze the thermodynamic properties of the current model. We get the age of the universe, the relation between the luminosity distance and the redshift factor and the deceleration parameter which are consistent with astronomical observations. In addition, we can well explain the age of the universe and the mechanism of accelerated expansion without introducing dark energy for the evolution history of the universe up to now. We also show that the generalized second law of thermodynamics, the energy balance condition and the energy equipartition relation always hold. More importantly, the energy balance condition is indeed a holographic relation between the bulk degrees of freedom and the surface degrees of freedom of the spacetime. Finally, we analyze the energy conditions and show that the strong energy condition is always violated and the weak energy condition is satisfied when $tleq2t_{0}$ in which $t$ is the time parameter and $t_{0}$ is the age of the universe.
We propose a cosmological scenario which describes the evolution history of the universe based on the particle creation and holographic equipartition. The model attempts to solve the inflation of the early universe and the accelerated expansion of th e present universe without introducing the dark energy from the perspective of thermodynamics. Throughout the evolution of the universe, we assume that the universe always creates particles in some way and holographic equipartition is always satisfied. Further, we choose that the creation rate of particles is proportional to $H^{2}$ in the early universe and to $H$ in the present and late universe, where $H$ is the Hubble parameter. Then we obtain the solutions $a(t)propto e^{alpha t/3}$ and $a(t)propto t^{1/2}$ for the early universe and the solutions $a(t)propto t^{delta}$ and $a(t)propto e^{Ht}$ for the present and late universe, where $alpha$ and $delta$ are the parameters. Finally, we obtain and analyze two important thermodynamic properties for the present model.
It has previously been shown that it is more general to describe the evolution of the universe based on the emergence of the space and the energy balance relation. Here we investigate the thermodynamic properties of the universe described by such a m odel. We show that the first law of thermodynamics and the generalized second law of thermodynamics (GSLT) are both satisfied and the weak energy condition are also fulfilled for two typical examples. Finally we examine the physical consistency for the present model.
174 - Fei-Quan Tu , Yi-Xin Chen 2013
Our aim is to investigate the thermodynamic properties of the universe bounded by the cosmological event horizon and dominated by the tachyon fluid. We give two different laws of evolution of our universe. Further, we show the first law and the gener alized second law of thermodynamics (GSLT) are both satisfied in two cases, but their properties of the thermodynamic equilibrium are totally different. Besides, under our solutions, we find the validity of the laws of thermodynamics is irrelevant with the parameters of the tachyon fluid. Finally, we conclude that the universe bounded by the cosmological event horizon and dominated by the tachyon fluid has a good thermodynamic description. In turn, the thermodynamic description can provide a good physical interpretation for the dynamic evolution of our universe due to the equivalence between the first law of thermodynamics and the Friedmann equation to some extent.
70 - Fei-Quan Tu , Yi-Xin Chen 2013
In this paper, we propose a model in which an additional pressure due to the effects of the entropic force is added to the ideal fluid. Furthermore, we obtain the dynamic equation in the FRW universe which contains the quantum gravitational effects b ased on the description of entropic force and emergence of space. Our model can well explain the age of the universe and the effect of the current accelerating expansion. We give the relation between the luminosity distance and the redshift factor, and compare this relation with that of lambda cold dark matter model($Lambda CDM$ model).
151 - Fei-Quan Tu , Yi-Xin Chen 2013
It has been shown that Friedmann equation of FRW universe can be derived from the idea which says cosmic space is emergent as cosmic time progresses and our universe is expanding towards the state with the holographic equipartition by Padmanabhan. In this note, we give a general relationship between the horizon entropy and the number of the degrees of freedom on the surface, we also obtain the corresponding dynamic equations by using the idea of emergence of space in the $f(R)$ theory and deformed Hov{r}ava-Lifshitz (HL) theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا