ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper considers the moduli spaces (stacks) of parabolic bundles (parabolic logarithmic flat bundles with given spectrum, parabolic regular Higgs bundles) with rank 2 and degree 1 over $mathbb{P}^1$ with five marked points. The stratification str uctures on these moduli spaces (stacks) are investigated. We confirm Simpsons foliation conjecture of moduli space of parabolic logarithmic flat bundles for our case.
In this paper, we propose a talking face generation method that takes an audio signal as input and a short target video clip as reference, and synthesizes a photo-realistic video of the target face with natural lip motions, head poses, and eye blinks that are in-sync with the input audio signal. We note that the synthetic face attributes include not only explicit ones such as lip motions that have high correlations with speech, but also implicit ones such as head poses and eye blinks that have only weak correlation with the input audio. To model such complicated relationships among different face attributes with input audio, we propose a FACe Implicit Attribute Learning Generative Adversarial Network (FACIAL-GAN), which integrates the phonetics-aware, context-aware, and identity-aware information to synthesize the 3D face animation with realistic motions of lips, head poses, and eye blinks. Then, our Rendering-to-Video network takes the rendered face images and the attention map of eye blinks as input to generate the photo-realistic output video frames. Experimental results and user studies show our method can generate realistic talking face videos with not only synchronized lip motions, but also natural head movements and eye blinks, with better qualities than the results of state-of-the-art methods.
We provide the analytic expressions of the totally symmetric and anti-symmetric structure constants in the $mathfrak{su}(N)$ Lie algebra. The derivation is based on a relation linking the index of a generator to the indexes of its non-null elements. The closed formulas obtained to compute the values of the structure constants are simple expressions involving those indexes and can be analytically evaluated without any need of the expression of the generators. We hope that these expressions can be widely used for analytical and computational interest in Physics.
123 - Wenfeng Cui , Fei Huang , Jing Shu 2021
The measurement of gravitational waves produced by binary black-hole mergers at the Advanced LIGO has encouraged extensive studies on the stochastic gravitational wave background. Recent studies have focused on gravitational wave sources made of the same species, such as mergers from binary primordial black holes or those from binary astrophysical black holes. In this paper, we study a new possibility --- the stochastic gravitational wave background produced by mergers of one primordial black hole and one astrophysical black hole. Such systems are necessarily present if primordial black holes exist. We study the isotropic gravitational wave background produced through the history of the Universe. We find it is very challenging to detect such a signal. We also demonstrate that it is improper to treat the gravitational waves produced by such binaries in the Milky Way as a directional stochastic background, due to a very low binary formation rate.
KM3NeT is a multi-purpose cubic-kilometer neutrino observatory under construction in the Mediterranean Sea. It consists of ORCA and ARCA (for Oscillation and Astroparticle Research with Cosmics in the Abyss, respectively), currently both have a few d etection lines in operation. Although having different primary goals, both detectors can be used for neutrino astronomy over a wide energy range, from a few tens of MeVs to a few tens of PeV. In view of the growing field of time-domain astronomy, it is crucial to be able to identify neutrino candidates in real-time. This online neutrino sample will allow triggered neutrino alerts that will be sent to the astronomy community and to look for time/space coincidences around external electromagnetic and multi-messenger triggers. These real-time searches can significantly increase the discovery potential of transient cosmic accelerators and refine the pointing directions in the case of poorly localized triggers, such as gravitational waves. In the field of core-collapse supernovae (CCSN), the detection of the MeV-scale CCSN neutrinos is crucial as an early warning of the electromagnetic follow-up. KM3NeTs digital optical modules act as good detectors for these supernovae neutrinos. This proceeding presents the status of KM3NeTs real-time multi-messenger activities, including online event reconstruction, event classification and selection, alert distribution, and supernova monitoring.
Chalcogenide glass (ChG) is an attractive material for integrated nonlinear photonics due to its wide transparency and high nonlinearity, and its capability of being directly deposited and patterned on Silicon wafer substrates. It has a singular Rama n effect among amorphous materials. Yet, the Raman lasing performance in high quality and chip integrated ChG microresonators remains unexplored. Here, we demonstrate an engineered Raman lasing dynamic based on home developed photonic integrated high-Q ChG microresonators. With a quality factor above 10^6, we achieve the record-low lasing threshold 3.25 mW among integrated planar photonic platforms. Both the single-mode Raman lasers and a broadband Raman-Kerr comb are observed and characterized, which is dependent on the dispersion of our flexible photonic platform and engineered via tuning the waveguide geometric size. The tunability of such a chipscale Raman laser is also demonstrated through tuning the pump wavelength and tuning the operating temperature on the chip. This allows for the access of single-mode lasing at arbitrary wavelengths in the range 1615-1755 nm. Our results may contribute to the understanding of rich Raman and Kerr nonlinear interactions in dissipative and nonlinear microresonators, and on application aspect, may pave a way to chip-scale efficient Raman lasers that is highly desired in spectroscopic applications in the infrared.
The mass spectrum of hidden charm pentaquark states composed of two diquarks and an antiquark are calculated by use of an effective Hamiltonian which includes explicitly the spin, color, and flavor dependent interactions. The results show that the $P _c(4312)^+$ and $P_c(4440)^+$ states could be explained as hidden charm pentaquark states with isospin and spin-parity $IJ^P=1/2left(3/2^-right)$, the $P_c(4457)^+$ state could be explained as a hidden charm pentaquark state with $IJ^P=1/2left(5/2^-right)$, and the $P_{cs}(4459)^+$ state could be explained as a hidden charm pentaquark state with $IJ^P=0left(1/2^-right)$ or $0left(3/2^-right)$. Predications for the masses of other possible pentaquark states are also given, and the possible decay channels of these hidden charm pentaquark states are discussed.
We theoretically demonstrate that chemical reaction rate constant can be significantly suppressed by coupling molecular vibrations with an optical cavity, exhibiting both the collective coupling effect and the cavity-frequency modification of the rat e constant. When a reaction coordinate is strongly coupled to the solvent molecules, the reaction rate constant is reduced due to the dynamical caging effect. We demonstrate that collectively coupling the solvent to the cavity can further enhance this dynamical caging effect, leading to additional suppression of the chemical kinetics. This effect is further amplified when cavity loss is considered.
In order to improve dynamic characteristics of the power system with high-proportion renewable energy sources (RESs), it is necessary for the voltage source converter (VSC), interfaces of RESs, to provide inertial and frequency regulation. In practic al applications, VSCs are better to be controlled as a current source due to its weak overcurrent capacity. According to the characteristic, a dual synchronous theory is proposed to analyze the synchronization between current sources in this paper. Based on dual synchronous idea, a dual synchronous generator (DSG) control is applied in VSC to form inertial current source. In addition, a braking control is embedded in DSG control to improve the transient stability of VSC. Finally, experimental results verify the effectiveness of the theory and the control method.
We perform on-the-fly non-adiabatic molecular dynamics simulations using the symmetrical quasi-classical (SQC) approach with the recently suggested molecular Tully models: ethylene and fulvene. We attempt to provide benchmarks of the SQC methods usin g both the square and the triangle windowing schemes as well as the recently proposed electronic zero-point-energy correction scheme (so-called the gamma correction). We use the quasi-diabatic propagation scheme to directly interface the diabatic SQC methods with adiabatic electronic structure calculations. Our results showcase the drastic improvement of the accuracy by using the trajectory-adjusted gamma-corrections, which outperform the widely used trajectory surface hopping method with decoherence corrections. These calculations provide useful and non-trivial tests to systematically investigate the numerical performance of various diabatic quantum dynamics approaches, going beyond simple diabatic model systems that have been used as the major workhorse in the quantum dynamics field. At the same time, these available benchmark studies will also likely foster the development of new quantum dynamics approaches based on these techniques.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا