ترغب بنشر مسار تعليمي؟ اضغط هنا

The physics of the triangular lattice Hubbard model exhibits a rich phenomenology, ranging from a metal-insulator transition, intriguing thermodynamic behavior, and a putative spin liquid phase at intermediate coupling, ultimately becoming a magnetic insulator at strong coupling. In this multi-method study, we combine a finite-temperature tensor network method, minimally entangled thermal typical states (METTS), with two Green function-based methods, connected-determinant diagrammatic Monte Carlo (DiagMC) and cellular dynamical mean-field theory (CDMFT), to establish several aspects of this model. We elucidate the evolution from the metallic to the insulating regime from the complementary perspectives brought by these different methods. We compute the full thermodynamics of the model on a width-4 cylinder using METTS in the intermediate to strong coupling regime. We find that the insulating state hosts a large entropy at intermediate temperatures, which increases with the strength of the coupling. Correspondingly, and consistently with a thermodynamic Maxwell relation, the double occupancy has a minimum as a function of temperature which is the manifestation of the Pomeranchuk effect of increased localisation upon heating. The intermediate coupling regime is found to exhibit both pronounced chiral as well as stripy antiferromagnetic spin correlations. We propose a scenario in which time-reversal symmetry broken states compete with nematic, lattice rotational symmetry breaking orders at lowest temperatures.
We present a technique that enables the evaluation of perturbative expansions based on one-loop-renormalized vertices up to large expansion orders. Specifically, we show how to compute large-order corrections to the random phase approximation in eith er the particle-hole or particle-particle channels. The algorithms efficiency is achieved by the summation over contributions of all symmetrized Feynman diagram topologies using determinants, and by integrating out analytically the two-body long-range interactions in order to yield an effective zero-range interaction. Notably, the exponential scaling of the algorithm as a function of perturbation order leads to a polynomial scaling of the approximation error with computational time for a convergent series. To assess the performance of our approach, we apply it to the non-perturbative regime of the square-lattice fermionic Hubbard model away from half-filling and report, as compared to the bare interaction expansion algorithm, significant improvements of the Monte Carlo variance as well as the convergence properties of the resulting perturbative series.
The repulsive Fermi Hubbard model on the square lattice has a rich phase diagram near half-filling (corresponding to the particle density per lattice site $n=1$): for $n=1$ the ground state is an antiferromagnetic insulator, at $0.6 < n lesssim 0.8$, it is a $d_{x^2-y^2}$-wave superfluid (at least for moderately strong interactions $U lesssim 4t$ in terms of the hopping $t$), and the region $1-n ll 1$ is most likely subject to phase separation. Much of this physics is preempted at finite temperatures and to an extent driven by strong magnetic fluctuations, their quantitative characteristics and how they change with the doping level being much less understood. Experiments on ultra-cold atoms have recently gained access to this interesting fluctuation regime, which is now under extensive investigation. In this work we employ a self-consistent skeleton diagrammatic approach to quantify the characteristic temperature scale $T_{M}(n)$ for the onset of magnetic fluctuations with a large correlation length and identify their nature. Our results suggest that the strongest fluctuations---and hence highest $T_{M}$ and easiest experimental access to this regime---are observed at $U/t approx 4-6$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا